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1 Introduction

It has been known at least since Geurts and Nouwen (2007) that certain types
of modified numerals give rise to so-called ignorance effects. As can be observed
in (1), the numeral modifiers at least and at most are incompatible with exact
knowledge, unlike more than and fewer than.

(1) a. I know exactly how many books there are in this bookshop, #and
it’s { at least / at most } 10,000.

b. I know exactly how many books there are in this bookshop, and it’s
{ more than / fewer than } 10,000.

Following Nouwen (2010), I will refer to modified numerals that yield ignorance
effects as class B modified numerals and to those that do not as class A modified
numerals.

This paper is about what happens when class B modifiers occur with modals,
as in (2)-(5).

(2) Jane is allowed to invite at most two friends.

(3) Jane is required to invite at least two friends.

(4) (?)Jane is required to invite at most two friends.

(5) ?Jane is allowed to invite at least two friends.

There are two things to note here. First, the combinations of at most with an
existential modal and at least with a universal modal are felicitous, whereas the
other two combinations are less so, with (5) being quite marked and (4) being
slightly more natural, though still far less natural than (2), which appears to
express the same meaning as (4). It should be noted that these judgments
and other judgments throughout this paper are based on a context where the
question under discussion is (6) rather than, for instance, (7).

(6) How many friends is Jane { allowed / required } to invite?

(7) Is Jane { allowed / required } to invite { at least / at most } two friends?

As has been found experimentally by Westera and Brasoveanu (2014), QUD
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matters greatly for the interpretation of modified numerals. Most of the the-
oretical literature on modified numerals, however, assumes a how many QUD,
and I will stick with those types of cases here. Thus, the claim is that (5) is
semantically deviant as an answer to the question in (6), (4) is dispreferred to
(2) as an answer to (6), and both (2) and (3) are entirely felicitous.

The second observation is that the most prevalent reading of the natural
combinations in (2) and (3) is one without ignorance: the so-called authoritative
reading. (2) and (3) can be used to convey the number of friends Jane can or
must invite without any ignorance on the part of the speaker. On this reading,
(2) means that Jane obeys the rules if and only if she invites zero, one, or two
friends. The relevant reading of (3) is that Jane obeys the rules if and only if
she invites two or more friends.

Although less obvious, epistemic readings are also available for these sen-
tences. (8) is designed to bring out this reading for (3).

(8) Jane’s parents really want her to make more friends at her new school,
so they told her she is required to invite some number of friends to her
birthday party. I’m not sure how many friends Jane has to invite, but I
know she’s required to invite at least two.

In this example, the ignorance about what the minimum number of friends Jane
is required to bring is. This minimum comes from the modal in the QUD, How
many friends is Jane required to invite?, which presupposes that there is a lower
bound to the number of friends Jane invites in all possible worlds. (8) says that
this lower bound is at or above two.

A parallel context for (2) is given in (9). where the ignorance is about the
maximum number of friends Jane is allowed to invite.

(9) Jane’s parents want her to celebrate her birthday with only a tiny group
of friends. I’m not sure exactly how many friends she can invite, but I
know she’s allowed to invite at most two.

Again, this maximum comes from the modal in the QUD. The question How
many friends is Jane allowed to invite? indicates that there is an upper bound
to the number of friends Jane can invite. This upper bound is then said to be
at or below two.

Thus, (2) and (3) have ignorance readings, but the authoritative readings are
far more salient. This contrasts with (4) and (5), where the ignorance reading
is more prevalent. The ignorance reading of (4) is brought out in the context in
(10).

(10) Jane’s parents really want her to make more friends at her new school,
so they told her she is required to invite some number of friends to her
birthday party. I’m not sure how many friends Jane has to invite, but
it’s not that many: I know she’s required to invite at most two friends.

The universal modal in the QUD How many friends is Jane required to invite?
leads us to expect a lower bound. This lower bound, (10) says, is at or below the
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number two. Thus, despite the use of at most two,(10) is compatible with Jane
being allowed to invite more than two people. (4) can also be used authorita-
tively to set an upper bound to the number of friends Jane is allowed to invite,
but this is slightly odd as (2) is the preferred way to express this meaning.

Finally, the ignorance reading of (5) is illustrated in (11).

(11) Jane’s parents want her to celebrate her birthday but they told her
there’s only allowed to invite a certain number of friends. I’m not sure
exactly how many friends she can invite, but I know she’s allowed to
invite at least two.

The sentence containing the modified numeral can be thought of as answering
the question How many friends is Jane allowed to invite?, which presupposes
an upper bound. The speaker is not sure what this upper bound is, but she
knows it is two or higher.

When we compare (2) to (4), the ignorance reading is more salient in (4)
than in (2), whilst the authoritative reading is more prevalent in (2) than in
(4). (5) is again the most extreme example: it lacks an authoritative reading
and only gives rise to an ignorance reading given the how many QUD. Thus, the
naturalness of the combination of modified numeral and modal correlates with
its ability to obviate the ignorance inference and give rise to an authoritative
reading instead. (2) and (3) are excellent ignorance obviators while (4) and (5)
are less so, with (4) being better than (5).

As far as I am aware, no account of modified numerals has taken these
two observations into account. Instead, all accounts on the market derive both
ignorance and authoritative readings for all four combinations in (2)-(5) and
predict that these examples are all equally felicitous (Geurts & Nouwen, 2007;
Nouwen, 2010; Coppock & Brochhagen, 2013; Schwarz, 2013; Kennedy, 2015).
In addition, existing accounts of these data derive readings for (2) that are too
weak, as I will show in the next section.

In this paper I present an account that generates all and only the correct
readings for sentences where modals interact with modified numerals. The ac-
count rests on a careful consideration of the scope facts and a mechanism of
optional flattening in the framework of inquisitive semantics (e.g. Ciardelli,
Groenendijk, & Roelofsen, 2018).

The paper is structured as follows. In the next section I will discuss previous
accounts of modified numerals and modals and show that they do not capture
the distinctions discussed above. Section 3 contains my account. In section 4 I
discuss some further benefits of the account that go beyond the data in (2)-(5).
Section 5 concludes.
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2 Existing accounts of modified numerals and
modals

Here I will show how existing accounts of class B modified numerals fail to
capture the observations I made in the previous section as well as the strong
reading that arises when at most is combined with an existential modal. The
account I will discuss to make this point is Kennedy (2015), but other prominent
accounts such as Coppock and Brochhagen (2013) and Schwarz (2013) face the
same issues.

I will start by considering Kennedy’s account of modified numerals combined
with universal modals. For Kennedy, numeral modifiers are degree quantifiers
that can undergo QR to take sentence scope. As such, they can take scope either
above or below modals. It is this scope ambiguity that causes the pragmatic
ambiguity for Kennedy: wide scope for the modified numeral yields ignorance
readings, whereas narrow scope generates authoritative readings (a character-
istic his account shares with e.g. Büring, 2008; Schwarz, 2013; Coppock &
Brochhagen, 2013). These readings are derived through a scalar implicature
mechanism. Kennedy’s two denotations for (3) are given in (12), where max is
an operator that picks out the member with the highest cardinality out of a set
of degrees.

(3) Jane is required to invite at least two friends.

(12) a. max {n | 2[∃x[invite(j,x) ∧ friends(x) ∧ #x = n]]} ≥ 2
b. 2 [max{n | ∃x[invite(j,x) ∧ friends(x) ∧ #x = n]} ≥ 2]

(12-a) says that there is a set of numbers of friends Jane is required to invite,
and the maximal member of this set is three or higher. (12-a) says that it is
required that the maximum number of friends Jane invites is three or higher.
These denotations are truth-conditionally equivalent and their truth conditions
indeed correspond to the intuitive meaning of (3). However, they give rise
to distinct scalar implicatures. For Kennedy, the alternatives to a sentence
with a modified numeral are those where the numeral modifier is replaced by
a different numeral modifier (at least, at most, more than, or fewer than) and
those where the modified numeral as a whole is replaced by a bare numeral.
Note that Kennedy’s choice of alternatives indicates that he assumes a how
many QUD. If he had taken the QUD to be (7), the only alternative would
have been the negation of the relevant sentence. Given these alternatives, the
relevant implicature of (12-a) are those schematised in (13), where K stands for
know.

(13) {¬K(max(2) = 2),¬K(max(2) > 2)}.

Following the standard recipe for implicature calculation (Geurts, 2010; Sauer-
land, 2004), the implicatures in (13) are referred to as the primary implicatures
of (3): the speaker does not know that the maximum required number is two
and she also does not know that it is higher than two. These implicatures can-
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not be strengthened to the secondary implicatures given in (14): the speaker
knows that the maximum is not two and she knows that it is not higher than
two.

(14) {K¬(max(2) = 2),K¬(max(2) > 2)}.

The reason is that together, these secondary implicatures contradict the asser-
tion in (12-a). Therefore, only the primary implicatures in (13) can be calcu-
lated, and this gives us the ignorance reading: the speaker knows that Jane
is required to invite two or more friends, but she does not know whether the
number of friends Jane must invite is two or higher.

For (12-b), the relevant primary implicatures are given in (15).

(15) {¬K(2(max = 2)),¬K(2(max > 2))}

Unlike before, the primary implicatures can now be strengthened to the sec-
ondary implicatures in (16) without contradicting the assertion.

(16) {K¬(2(max = 2)),K¬(2(max > 2))}

This is how we derive the authoritative reading: Jane is required to invite two or
more friends, and, given that neither is necessary, both options of inviting two
friends and inviting more than two friends are allowed. Thus, for (3), Kennedy’s
account correctly predicts the two readings we observe.

For (4), Kennedy derives the two meanings in (17).

(4) (?)Jane is required to invite at most two friends.

(17) a. max {n | 2[∃x[invite(j,x) ∧ friends(x) ∧ #x = n]]} ≤ 2
b. 2 [max{n | ∃x[invite(j,x) ∧ friends(x) ∧ #x = n]} ≤ 2]

The wide scope reading is that Jane is required to invite some number of friends,
and this number is two or lower. Thus: she invites some minimum number of
friends in every accessible world, and this number is two or lower. In the same
way as before, we derive the primary ignorance implicatures in (18), which
cannot be strengthened to secondary implicatures. Thus: the speaker does not
know whether the number of friends Jane has to invite is two or less than two.

(18) {K¬(2(max = 2)),K¬(2(max < 2))}

Again as before, secondary implicatures can be derived for (17-b). The deno-
tation in conjunction with the implicatures in (19) convey that in all accessible
worlds, Jane invites a maximum of two friends. She cannot invite more than
two, but she is free to choose between two and some number below two.

(19) {K¬(2(max = 2)),K¬(2(max < 2))}

In summary, the ignorance readings of both (3) and (4) can be said to partly
answer the question How many friends is Jane required to invite?, which makes
reference to some minimum number of friends Jane must invite. (3) then says
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that this minimum is at or above two, whilst (4) says that it is at or below two.
The authoritative readings are that she is not allowed to invite less than two
friends and that she is not allowed to invite more than two friends respectively.
While these readings all seem to be attested, the fact that (4) is less natural-
sounding than (3) is not taken into consideration, and neither is the fact that
the ignorance reading of (4) is more prevalent than that of (3). These issues
are relatively minor, but bigger problems occur when we consider cases with
existential modals.

Let us begin by considering (5) and its denotations in (20).

(5) ?Jane is allowed to invite at least two friends.

(20) a. max {n | ♦[∃x[invite(j,x) ∧ friends(x) ∧ #x = n]]} ≥ 2
b. ♦ [max{n | ∃x[invite(j,x) ∧ friends(x) ∧ #x = n]} ≥ 2]

Exactly as above, we correctly derive an ignorance reading for (20-a). In con-
junction with the primary implicatures in (21), the reading is that there is some
maximum number of friends Jane can invite, and this number is two or higher;
the speaker does not know which.

(21) {¬K(max(♦) = 2),¬K(max(♦) > 2)}

Unlike above, we derive a second set of ignorance implicatures for (20-b). The
secondary implicatures in (23) contradict the assertion, so we are left with the
primary implicatures in (22).

(22) {K¬(♦(max = 2)),K¬(♦(max > 2))}
(23) {K¬(♦(max = 2)),K¬(♦(max > 2))}

The result is the weak meaning that it is allowed for Jane to invite two or
more friends, and the speaker is unsure whether two is allowed and whether
more than two is allowed. It is unclear whether this weak ignorance reading is
attested. Kennedy uses a mechanism with ‘exhaustified alternatives’ (Kratzer
& Shimoyama, 2002) for these types of examples, which yields the authoritative
reading given below.

(24) {K¬(♦(max = 2)) ∧ ¬(♦(max > 2)),
K¬(♦(max > 2)) ∧ ¬(♦(max = 2))}

Combined with the assertion, the reading is that it is allowed for Jane to invite
two or more friends, and she can choose between inviting two friends and invit-
ing more than two friends. Kennedy claims that this authoritative reading is
attested in the text in (25) (p.35).

(25) Previously in Germany, students were allowed to take at least five years
to complete the Magister’s diploma, the basic university degree. But
now, Germany has adopted the Anglo-Saxon style of bachelor’s and
master’s degrees. The bachelor’s degree is designed to take three years
to complete; the master’s, a further two years.
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While (25) indeed has a reading without an ignorance inference, this is due to
the plural subject students. It is known that plurals and universally quantified
expressions, like modals, can obviate ignorance inferences. This has been ob-
served by Nouwen (2010) and can be seen in his example in (26-a) (p.4) and its
equivalent with a universal quantifier in (26-b).

(26) a. Computers of this kind have at least 512MB of memory.
b. All computers of this kind have at least 512MB of memory.

The most salient reading of the examples in (26) is one without ignorance.
Instead, the sentences convey that computers vary in their memory capacity,
but no computer has a memory capacity of less than 512MB. The same is true
for (25), where students vary in the number of years they take to complete the
diploma. Kennedy mentions in a footnote (fn. 7) that Doris Penka has pointed
out this issue to him, but he does not seek to resolve it. When we consider a
case without a plural and the How many QUD, only an ignorance reading arises,
as (27) demonstrates.

(27) Q: How much time is Cara allowed to take to complete her degree?
A: Cara is allowed to take at least five years.

Thus, Kennedy incorrectly predicts authoritative readings for cases like (5).
Finally, let us return to (2), for which Kennedy generates the two sets of

truth conditions in (28).

(2) Jane is allowed to invite at most two friends.

(28) a. max {n | ♦[∃x[invite(j,x) ∧ friends(x) ∧ #x = n]]} ≤ 2
b. ♦ [max{n | ∃x[invite(j,x) ∧ friends(x) ∧ #x = n]} ≤ 2]

As with (5), the ignorance reading is correctly generated for (28-a). The primary
implicatures in (29) cannot be strengthened to the secondary implicatures in
(30) without this resulting in a contradiction to the assertion, and so we get
the ignorance reading that there is some upper bound to the number of friends
Jane can invite, and this upper bound is at or below two.

(29) {¬K(max(♦) = 2),¬K(max(♦) < 2)}.
(30) {K¬(max(♦) = 2),K¬(max(♦) < 2)}.

But (28-b) cannot give us the authoritative reading. First, as with (5), we
cannot calculate secondary implicatures, given in (32), as this would again yield
a contradiction. Only the primary implicatures in (31) can be generated.

(31) {K¬(♦(max = 2)),K¬(♦(max < 2))}
(32) {K¬(♦(max = 2)),K¬(♦(max < 2))}

Thus, only an ignorance reading is derived. Second, (28-b) only states that
there is a permissible world where Jane invites zero, one, or two friends, which
is entirely compatible with her inviting more than two friends in other worlds.
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The authoritative reading we observe for (2) is far stronger than this: it does
not allow Jane to invite more than two friends.

Kennedy remedies the first issue by using exhaustified alternatives, as he
did for (5). These exhaustified alternatives are given below and they do indeed
yield an authoritative reading.

(33) {K¬(♦(max = 2)) ∧ ¬(♦(max < 2)),
K¬(♦(max < 2)) ∧ ¬(♦(max = 2))}

The second issue, however, is difficult to resolve. Kennedy claims that an im-
plicature mechanism is responsible for the upper bound of (2), but the central
characteristic of an implicature is cancellability. Therefore, (34-a). with the
modifier fewer than, can be said to have an upper bound implicature, but (34-b),
with at most, cannot.1

(34) a. Jane is allowed to invite fewer than two friends, but more is fine
too.

b. Jane is allowed to invite at most two friends, #but more is fine too.

Thus, there are two main issues with Kennedy’s analysis. The first is that he

1Kennedy gives two arguments in favour of his implicature story. First, according to
Kennedy, (i), like (34-b), sounds bad, and this is clearly a case of a scalar implicature creating
an upper bound. I am not convinced that this judgment is right, and even Kennedy himself
only claims that it’s ‘more like’ (34-b) than like (34-a) rather than exactly like (34-b).

(i) Jane is allowed to invite zero to three friends, but more is fine too.

Additionally, if Kennedy is correct we would expect (ii) to sound as bad as (34-b), but it is
actually quite felicitous.

(ii) Jane is allowed to invite between zero and three friends, but more is fine too.

Second, Kennedy gives the example from a job advert in (iii) (p.34), which he indicates has
the scope configuration 2 > ♦ > max. This, he argues, is a case where at most does not set
an upper bound, because employees who are able to lift more than 70lbs will obviously not
be turned down for the job.

(iii) [...] Must be able to lift at most 70lbs.

Aside from the fact that it is unknown what exactly the effect of stacked modals on modified
numerals is, I would argue that (iii) may actually have the scope configuration max > 2♦.
Kennedy rules out this scope configurations because in his theory, giving at most wide scope
yields ignorance inferences. However, this is merely an assumption, and as will become clear
in the next section, my theory does not have this characteristic. Furthermore, this case is
not captured by Kennedy’s theory as the QUD of (iii) is not a how many question. The
interviewer’s answer in (iv) is rather strange because it has an ignorance inference. The
yes/no QUD in (v) appears to be more natural. This case is thus separate from the other
ones we have discussed and cannot be directly compared to them.

(iv) Interviewee: How much do I have to be able to lift to get this job?
Interviewer: ??You must be able to lift at most 70lbs.

(v) Interviewee: Should I be able to lift up to 70lbs to get this job?
Interviewer: (?)Yes, you must be able to lift at most 70lbs.
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derives both ignorance and authoritative readings for all four possible combina-
tions of modified numerals and modals, not taking into account the distinction
between natural and unnatural combinations and the fact that authoritative
readings are far more salient for the natural combinations than for the unnatu-
ral ones, and even absent for the case where at least occurs with an existential
modal. The second is that he is unable to derive the strong upper-bounded
reading for the combination of at most with an existential modal, even though
this is the most prevalent reading of such sentences.

I have chosen to discuss Kennedy’s account here but these issues also hold
for other accounts that use scalar implicatures to generate ignorance inferences
(such as Büring, 2008 and Schwarz, 2013) as well as Coppock and Brochhagen
(2013), which uses a quality implicature system to obtain ignorance readings.
While there are a few authors who do derive the correct readings for cases with
at most and an existential modal (Nouwen, 2010; Penka, 2014), no-one has
observed the dichotomy between the at least - 2 and at most - ♦ pairs on the
one hand and the at least - ♦ and at most - 2 pairs on the other. In the next
section I will present an analysis that resolves these two issues.

3 Analysis

Below I will outline an analysis that generates the readings we observe for all four
combinations in (2)-(5). Because I have borrowed the implicature generation
mechanism I use from Ciardelli et al. (2018), I first briefly go over this method
in the next section. In section 3.2 I discuss how the lexical entries I propose can
be used to calculate ignorance implicatures in cases where modified numerals
occur without modals. Section 3.3 contains the mechanism I use to derive two
readings for those cases where modified numerals occur with modals. Section
3.4 contains an account of the two natural combinations of modified numerals
and modals, and section 3.5 is about the less natural ones.

3.1 Inquisitive semantics and epistemic inferences

We have seen that Kennedy (2015), among others, uses the standard recipe to
obtain ignorance implicatures. I will instead use a mechanism in the inquisitive
semantics framework to calculate these inferences. This mechanism generates ig-
norance implicatures as quality implicatures rather than quantity implicatures.
In this section I will briefly outline the basic notions of inquisitive semantics
and the implicature calculation mechanism that we will need.

In inquisitive semantics, propositions are sets of possibilities. A possibility is
what is usually called a proposition: an expression of type p (=〈s, t〉). When a
proposition contains more than one possibility, it is called an inquisitive proposi-
tion. By using an inquisitive proposition, a speaker is said to raise an issue. An
issue is a request for the hearer to resolve the issue: to pick out the possibility
in the proposition that is true. For example, the disjunction in (35) raises two
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possibilities: the possibility that Anne speaks French and the possibility that
she speaks German.

(35) Anne speaks French or German.

This is represented in (36), where pf stands for the set of worlds where she
speaks French and pg stands for the set of worlds where she speaks German.

(36) {pf , pg}

Inquisitive semantics has been used in the literature on modified numerals to
calculate epistemic inferences (Coppock & Brochhagen, 2013; Blok, 2015, 2016;
Ciardelli, Coppock, & Roelofsen, 2016; Cremers, Coppock, Dotlacil, & Roelof-
sen, 2017; Blok, 2019). In this literature, the epistemic inferences class B nu-
meral modifiers give rise to are said to be quality implicatures. I will follow
Ciardelli et al. (2016)’s way of calculating these implicatures, which is slightly
different from the way it is done in the other literature I have cited.2 The idea
is that the Gricean Maxim of Quality (Grice, 1975) consists of two parts, given
below.

(37) The Maxim of Quantity in Inquisitive Semantics (Ciardelli et al., 2016)

a. s ⊆ info(φ)
b. if φ is inquisitive, then s 6∈ JφK

The Maxim of Quality is only satisfied if both conditions are met. info(φ) is the
information contained in a proposition φ: the union of all its possibilities. s is
the speaker’s information state: a set of worlds. (37-a) says that the speaker’s
information state must be a subset of the informative content of the proposition
she utters. This is the original Quality Maxim: say only what you believe to be
true. The second part only comes into play when an inquisitive proposition is
used. In this case, the speaker’s information state cannot be an element of the
proposition she utters. That is, none of the possibilities in the proposition can
be the speaker’s information state. For instance, say that the speaker knows
that Anne speaks French: the possibility pf is her information state. Then if she
utters (35), she violates the Maxim of Quality, because she raises a proposition
that contains a possibility that is her information state. In less technical terms,
she suggests multiple options, inviting the hearer to select the true option, even
though she herself knows which option is true.3

When class B modified numerals are used without a modal, they give rise to
epistemic inferences. To derive these inferences, Ciardelli et al. (2016) propose

2Specifically, Ciardelli et al. (2016)’s theory is formulated in the framework InqB, which
is the downward closed version of inquisitive semantics: whenever a possibility occurs in a
proposition, all of its subsets are also in the proposition. The other papers cited here are
formulated in Inq∪, which is not downward closed and therefore allows nested possibilities:
one possibility can be contained in another possibility in the same proposition in a non-trivial
way.

3Of course this is a simplified model: any speaker’s information state will contain more
information than just the information that Anne speaks French.
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that class B numeral modifiers such at at least and at most give rise to inquisitive
propositions containing two possibilities. For instance, (38) contains the two
possibilities illustrated in (39): the possibility that Anne speaks exactly two
languages, represented by p2, and the possibility that she speaks three or more
languages, represented by p[3−∞).

(38) Anne speaks at least two languages.

(39) {p2, p[3−∞)}

Assuming that the speaker is being cooperative and following the Quality Maxim,
we can conclude from the fact that she used an inquisitive proposition that she
does not know which of the possibilities in the proposition are true. Thus, she
does not know if Anne speaks at least two languages and she does not know if
Anne speaks three or more languages. This is how the epistemic implicature
comes about. I will use this method in my account of the class B numeral
modifiers at least and at most.

3.2 The basics

I assume the syntactic structure in (40) for sentences like (2)-(5).

(40) [ 2/♦ [ Jane invites [ { at least / at most } [ [ two many ] friends ] ] ] ]

Here many is Hackl’s (2000) counting quantifier, defined below, which turns two
friends into a regular quantifier.

(41) JmanyK = λddλP〈e,t〉λQ〈e,t〉.∃x[#x = d ∧ P (x) ∧Q(x)]

I take at least and at most to be focus-sensitive expressions that can associate
not only with numerals but with with any element in their c-command domain.
This behaviour is illustrated in (42), where at least associates with three biscuits
rather than three.

(42) Hakim ate at least [three biscuits]F , and he probably had other things
too.

The structure in (40) is not the standard structure assumed for sentences with
modified numerals. Since Hackl (2000), it has become commonplace to assume
the structure of the DP given in (43) (Hackl, 2000; Nouwen, 2010; Schwarz,
2013; Coppock & Brochhagen, 2013; Kennedy, 2015).

(43) [ [ at least [ 2 many ] ] friends ]

In (43), however, at least does not c-command friends and cannot associate
with it, excluding cases like (42). I believe that the DP structure in (40), also
assumed by Krifka (1999) and Geurts and Nouwen (2007).

Furthermore, assume at least and at most to be of type 〈p, p〉, where p is
short for the inquisitive propositional type 〈〈s, t〉, t〉. As such, we can assume
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that they can occur at a position above or below the modal at LF, as shown in
(44) (this will be refined below).

(44) [ { at least / at most } [ 2/♦ [ { at least / at most } [ Jane invites [ [
two many ] friends ] ] ] ] ]

Recall that the QUD of an expression containing a modified numeral is essential
for the calculation of its implicatures. The link between focus marking and the
QUD is made by the Focus Principle, given in (45) (Beaver & Clark, 2008).
What this principle comes down to for our current purposes is that the QUD
must be a subset of the Rooth-Hamblin alternatives of an expression (Hamblin,
1971; Rooth, 1985, 1992).

(45) Focus Principle

a. Some part of a declarative utterance should give an answer to the
CQ

b. If Q is a set of Rooth-Hamblin alternatives, and A is a natural
language expression, then A gives an answer to Q if the focus value
of A is a subset of Q

Furthermore, I assume that there exists an ordered version of the QUD, S. This
ordering can be an entailment ordering or a pragmatic ranking. For instance,
for (46) the QUD in (47) can be ranked pragmatically as in (48).

(46) Laura is an [associate professor]F .

(47) QUD = { Laura is an assistant professor, Laura is an associate professor,
Laura is a full professor }

(48) S = { 〈Laura is a full professor, Laura is an associate professor〉, 〈Laura
is an associate professor, Laura is an assistant professor〉, ... }

I propose the lexical entries for at least and at most given below, with maxAL

as defined in (51).4

(49) Jat leastKS,AL = {λp.maxAL p , λp. ∪ {maxAL p′ | p′ >S p}}
(50) Jat mostKS,AL = {λp.maxAL p , λp. ∪ {maxAL p′ | p′ <S p}}
(51) maxAL = λp.{w|w ∈ p ∧ ¬∃p′[p′ >AL p ∧ w ∈ p′]}

A quick look at these lexical entries reveals that they are disjunctive, taking
the union of two possibilities. It is this disjunctive nature that will give us the
epistemic readings that we need.

To understand these lexical entries, we must first understand what maxAL

does. maxAL takes a possibility and returns a subset of this possibility. None
of the worlds in this subset are in a possibility p′ that is ranked higher than p.
This ranking is dependent on an ordered set of alternatives AL. AL is usually
equivalent to S but comes about in a different way. I will have more to say

4When not specified, all denotations represent the ordinary semantic value rather than the
set of alternatives. I will only use the superscripts O and A when the distinction is relevant.
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about this distinction in the next section. For now, we can simply assume AL
= S.

At least takes a possibility or set of worlds as an argument. It returns a
proposition containing two possibilities. The first is the possibility that results
from applying maxAL to the possibility it takes as an argument: maxAL p. The
second is the union of the set of possibilities maxAL p

′ for all possibilities p′ that
are ranked higher on S than p. At most also returns maxAL p and it returns
the set of possibilities maxAL p′ for all possibilities p′ that are ranked lower on
S than p.

Let us consider the example in (52) to make this more concrete. The preja-
cent of at least is the singleton proposition in (53).

(52) Abdullah ate at least two sandwiches.

(53) JAbdullah ate two sandwichesKO = p2 = {∃x[#x = 2 ∧ sandwiches(x)
∧ ate(Abdullah, x)]}

If the relevant scale is provided by the numeral, then the set S is ordered as in
(54), where pn stands for JAbdullah ate n sandwichesKO. The set AL used by
maxAL is equivalent to S. I assume a one-sided meaning of bare numerals. This
means that pn contains the world w[n] and also the worlds w[n]+[1], w[n]+[2], etc.,
where [n] means ‘exactly n’.

(54) S = AL = p0 < p1 < p2 < p3 < p4 ...

At least takes this possibility as an argument through pointwise functional ap-
plication (or Hamblin functional application, Hamblin, 1973) and returns (55).

(55) {p2 ∧ ¬p3, p3}

(55) contains two possibilities. The first possibility, p2 ∧ ¬p3, is the result of
applying maxAL to the prejacent p2. maxAL takes the possibility p2 and takes
out all the worlds that are in some alternative ordered higher than p2. Thus,
it takes out all the worlds that are in p3. Assuming a discrete scale, these are
the worlds w[2], w[3], w[4]... ∞. Thus, it takes out all the worlds in p3. It also
takes out all the worlds that are in p4 but not in p2, but this is vacuous, as these
worlds are also present in p3. Thus, the result is p2 ∧ ¬p3.

The second possibility is the result of applying maxAL to all possibilities p′

in S that are ordered higher than p. This process is shown in (56).

(56) maxAL p3 = p3 ∧ ¬p4,
maxAL p4 = p4 ∧ ¬p5,
maxAL p5 = p5 ∧ ¬p6,
etc.

As the denotation of at least shows, after the application of maxAL we take
the union of the set of all the possibilities in (56). This union is simply p3.
Therefore, p3 is the second possibility in (55).

Thus, the sentence in (52) conveys two possibilities: the possibility that
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Abdullah ate exactly two sandwiches and the possibility that he ate three or
more sandwiches. The Inquisitive Maxim of Quality says that one should not
utter an inquisitive proposition unless all the possibilities in the proposition
are live possibilities in your information state s. Thus, neither the possibility
p2∧¬p3 nor the possibility p3 are in the information state of the speaker of (52).
Therefore, the speaker is ignorant about which of the possibilities are true. This
is how the epistemic inference is derived.

The derivation of a sentence with at most, like (57), is very similar. The
prejacent of at most, like the prejacent of the at least sentence, is p2, spelled out
in (53).

(57) Abdullah ate at most two sandwiches.

Applying at most to the prejacent derives the proposition in (58).

(58) {p2 ∧ ¬p3, {w[0], w[1]}}

First we get p2 ∧ ¬p3 from maxAL p2, as above. Then we apply maxAL to all
propositions that are ordered lower than p2 on S, as in (59).

(59) maxAL p0 = p0 ∧ ¬p1,
maxAL p1 = p1 ∧ ¬p2

The union of these two possibilities is {w[0], w[1]}.5 (57) then conveys that
either Abdullah ate exactly two sandwiches or he ate fewer than two. As the
proposition is inquisitive, an epistemic implicature is derived through the Maxim
of Quality.

I have assumed here that at least and at most take possibilities as arguments.
In reality, I believe that their type is flexible. One way to implement this is to
follow Coppock and Brochhagen (2013) and assume flexible lexical entries, as
in (60)-(61), where α stands for any type ending in p and β is whatever type α
takes as an argument.

(60) Jat leastKS,AL = {λαλβ.maxAL (α(β)) , λαλβ. ∪ {maxAL p′ | p′ >S

α(β)}}
(61) Jat mostKS,AL = {λαλβ.maxAL (α(β)) , λαλβ. ∪ {maxAL p′ | p′ <S

α(β)}}

This way, at least and at most can be interpreted in situ. For instance, in (62)
at least takes five beers as an argument, which is turned into a regular quantifier
over individuals through Hackl’s (2000) many quantifier. The definition of five
many beers is given in (63).

(62) Maxine drank at least five beers.

(63) Jfive many beersK = { λP〈e,p〉.∃xe[#x = 5 ∧ beers(x) ∧ P (x)] }

The relevant denotation of at least is the one in (64). Applying at least to five

5This is equivalent to ¬p2.
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beers yields (65), which can then be combined with drank using QR or type
shifting.

(64) Jat leastKS,AL = {λP〈〈e,p〉,p〉λQ〈e,p〉.maxAL (P(Q)) , λP〈〈e,p〉,p〉λQ〈e,p〉.∪
{maxAL p′ | p′ >S P(Q)}}

(65) Jat least five many beersK = {λQ〈e,p〉.maxAL (∃xe[#x = 5 ∧ beers(x)∧
Q(x)]), λQ〈e,p〉. ∪ {maxAL p′ | p′ >S ∃xe[#x = 5 ∧ beers(x) ∧Q(x)]}}

Throughout the rest of this paper I will continue to use the denotations in (49)-
(50) because this makes for less complex derivations. Provided that the order of
interpretation stays the same when there are different operators in the sentence,
it makes no difference for the end result.

So far the readings I have derived are the same as those in Ciardelli et al.
(2016), although the compositional implementation of the idea is my own. In
the next section I will show how variation and epistemic readings with class B
modifiers and modals can be derived using the lexical entries I proposed above
in combination with an additional mechanism of optional flattening that has
not been used in the literature.

3.3 The mechanism

My account rests on two assumptions. The first is that class B numeral modifiers
must take scope over existential modals. The second is that modals optionally
flatten the alternatives in their scope. Here I will discuss each of these assump-
tions.

3.3.1 Class B modifiers and scope

There are three arguments why class B numeral modifiers must outscope exis-
tential modals. The first argument comes from the data presented in section 2:
weak readings where existential modals take scope over at most simply do not
exist. The fact that the upper bound of sentences like (2) cannot be cancelled
signals that an implicature mechanism cannot be responsible for it. Therefore,
the only way to get the strong reading we need is by letting at most take wide
scope.

The second argument for the claim that class B numeral modifiers must take
scope over existential modals is that, on closer inspection of the judgments, we
can see that the surface scope reading is also not attested in the at least case.
Consider (66) and the two theoretically possible readings in (67).

(66) Marin is allowed to read at least five books.

(67) a. ♦ [ max { n | Marin reads n books } ≥ 5 ]
b. max { n | ♦ [ Marin reads n books ] } ≥ 5

Semantically, the difference in meaning between the surface scope reading in
(67-a) and the inverse scope reading in (67-b) is that only the inverse scope
reading carries the presupposition that there is an upper bound to what is
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allowed. Thus, (67-a) merely conveys that there is a permissible world where
Marin reads five or more books. (67-b) expresses that there is a maximum
number of books Marin is allowed to read, and that maximum is five or higher.
This presupposition that there is a maximum allowed number follows from the
semantics of max. max picks the highest number out of the set, but if there
is no highest number, this is not possible. In this case, max cannot pick any
number. We get ? ≥ 5, and there is no way for us to test whether the sentence
is true. Therefore, the only way for the sentence to receive a truth value is if
there is a maximum number of books Marin is allowed to read.

Let us consider our judgments on (66) and compare them to our judgments
on (68). (68) contains the class A modifier more than and is therefore predicted
to have a surface scope reading, unlike (66). This is because more than is not a
class B numeral modifier, and the claim I make here is that only class B numeral
modifiers must outscope existential modals.

(68) Marin is allowed to read more than five books.

Intuitively, (66) is felicitous only in a situation where there is indeed some
maximal number of books Marin can read, though the speaker does not know
what this upper bound is. (68), on the other hand, does not seem to carry
such a requirement. This indicates that the inverse scope reading is the only
possible reading for (66). Just like sentences with expressions like at most and
an existential modal, expressions like at least must take scope over the modal.
The surface scope reading is not attested.

To clarify the intuition, let us consider the following scenario. Say Marin is
a school child in a school with the following rules. The children in Year 4 are
allowed to read as many books as they like during the school year. The children
in Year 5, on the other hand, are expected to focus more on subjects such as
maths and geography, and they have an upper limit to the number of books
they can read at school. The exact upper limit varies from child to child and
depends on the child’s reading level and the child’s grades for other subjects. In
addition, new research has just been published that indicates that children who
read 20 books a year or more have better vocabulary than those who read fewer
than twenty books a year. One day, Marin’s dad and another parent, David are
talking about this new research. David wonders about Marin’s vocabulary and
asks the question in (69).

(69) David: Is Marin in Year 4 or in Year 5?

Let us first say that Marin is in year 5. This means that there is a limit to
the number of books she is allowed to read. Fortunately for her vocabulary, the
limit in Marin’s particular case is 25, so it is higher than twenty. In this case,
Marin’s father can felicitously utter either (70-a) or (70-b). (70-a) presupposes
that there is an upper bound to the number of books Marin can read, and as
this is indeed the case, the utterance is unproblematic.

(70) a. Marin is in Year 5. She is allowed to read at least twenty books.
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b. Marin is in Year 5. She is allowed to read more than twenty books.

Now let us consider a scenario where Marin is in Year 4. This means that Marin
can read as many books as she wishes. In this case, only (71-b) is a felicitous
answer to David’s question. In (71-b), Marin’s father states that Marin is in
Year 4, and as a result, she is allowed to read more than 20 books, which is
good for her vocabulary. When we replace more than with at least, as in (71-a),
the statement is no longer felicitous in the context. Given that Marin can read
an unlimited number of books, it is very odd to state that she can read ‘at least
20’ books.

(71) a. Marin is in Year 4. #She is allowed to read at least twenty books.
b. Marin is in Year 4. She is allowed to read more than twenty books.

If (71-a) were ambiguous between a surface scope reading and an inverse scope
reading, it would be felicitous in the given context. Marin’s father could then
simply have intended the surface scope variation of the sentence. The proposi-
tion corresponding to the surface scope configuration does not carry the presup-
position that there is an upper limit to what is allowed. Therefore, it should be
as good as (71-b) in this scenario. The fact that it is not felicitous shows that
the surface scope reading does not exist. Therefore, the surface scope LF that
would yield this reading must not exist, either. Though the truth-conditional
difference is harder to detect in this case, it is nevertheless real, and we can
conclude that at least, like at most, must outscope existential modals.6

6At this point the reader may wonder if the same point can be made for interactions
between at least and universal modals such as (i). The two possible denotations of (i) are
given in (ii), with (ii-a) being the surface scope reading and (ii-b) being the split reading.

(i) Marin has to read at least five books.

(ii) a. 2 [ max {n | ∃x ∧#x = n ∧ book(x) ∧ read(Marin, x)} ≥ 5]
b. max {n | 2[∃x ∧#x = n ∧ book(x) ∧ read(Marin, x)]} ≥ 5

These two denotations are truth-conditionally equivalent: both are true if and only if the
lowest number of books Marin reads in all deontically accessible worlds is five. As in the
case with existential modals, (ii-b) carries the presupposition that there is an upper bound.
Here the presupposition is that there is an upper bound on what is required. Thus, there is
a point where the number of books Marin has read is sufficient. That means that the only
way the presupposition can fail is in a context in which it is known that the requirement has
no limit. One scenario in which it is known that the requirement is infinite is in the myth of
Sisyphus, who has been condemned to roll a rock up the hill only to watch it roll back down,
repeating this action for eternity. To simplify the example, let us assume that the myth is
slightly different: Sisyphus has an infinite number of rocks at his disposal, and he has to roll
them all up the hill, only to watch them roll back down on the other side of the hill. Then (iii)
should lead to a presupposition failure under the split reading. The presupposition is that
there is an upper bound to what is required, but in this case, there is no such upper bound.

(iii) #Sisyphus must roll at least a million rocks up the hill.

This sentence does indeed sound quite bad in the given context, and it appears to be worse
than (iv), where more than is used instead of at least.

(iv) ?Sisyphus must roll more than a million rocks up the hill.
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The third and final argument I will present for the statement that class B nu-
meral modifiers must take scope over existential modals is a syntactic argument.
Let us turn to (72) and (73). In these sentences, more than and at least occur
in a finite clause under an modal. Finite clauses are known to be islands for QR
(e.g. Reinhart, 2006; Fox, 2000 and references cited therein; see also Büring,
2008 for an example with a finite clause island for degree QR). This means that
in these examples, the relevant expressions are stuck below the modal. If class
B numeral modifiers must outscope existential modals, this means that forcing
them to be in the scope of existential modals is predicted to result in infelicity.

This prediction is borne out. As a baseline, consider (72) with a universal
modal. Here, no problems arise: both the class A modifier more than and the
class B modifiers at least can be used. When we consider similar cases with
existential modals, however, we see a contrast. More than but not at least
sits happily in the scope of the existential modal. Forcing at least under the
modal leads to an infelicitous sentence. This indicates that at least cannot scope
below an existential modal; it to scope above it. When this is not possible, the
derivation crashes.7

(72) a. The government requires that organic chickens have more than 1000
cm2 of space.

b. The government requires that organic chickens have at least 1000
cm2 of space.

However, we know that at least gives rise to epistemic inferences, and this may interfere
with our judgments. If the speaker knows that there is no upper bound to the number of
rocks Sisyphus must roll up the hill, then she is not ignorant about the precise number under
discussion. This may explain the contrast between (iii) and (iv). In addition, both sentences
also suffer from a Quantity violation: why say that Sisyphus must roll a million rocks or more
up the hill when you know that the amount is in fact infinite? Therefore, their oddness cannot
be attributed to presupposition failure. We could change the examples to (v) to remedy this,
but as at least is semantically vacuous in at least an infinite number and more than an infinite
number is impossible, these sentences are also bad for independent reasons.

(v) a. #Sisyphus must roll at least an infinite number of rocks up the hill.
b. #Sisyphus must roll more than an infinite number of rocks up the hill.

In other words, it seems to me that it is impossible to test whether at least can outscope a
universal modal in this way. However, as will become clear in this section, there is a syntactic
test that indicates that at least can in fact take scope under universal modals.

7The sentence in (73-b) improves considerably in an echoic context, such as in the dialogue
in (i).

(i) A: Are nurses allowed to work at least 40 hours a week?
B: Yes, new government regulations allow that nurses work { at least / minimally }
40 hours a week.

However, echoic contexts are not a good test for grammaticality or felicity in that they tend
to allow things that are normally ungrammatical. For instance, the PPI someone is licensed
under negation in the dialogue in (ii).

(ii) A: John saw someone.
B: No, he didn’t see someone.
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(73) a. New government regulations allow that nurses work more than 40
hours a week.

b. #New government regulations allow that nurses work at least 40
hours a week.

(74) and (75) make the same point for downward entailing modified numerals:
the class A modifier fewer/less than does not mind taking scope under a univer-
sal modal or an existential modal. The class B modifier at most, on the other
hand, only wants to take scope under a universal modal, and resists staying
under an existential modal.

(74) a. The factory farm requires that the chickens have less than 1000
cm2 of space.

b. The factory farm requires that the chickens have at most 1000 cm2

of space.

(75) a. New government regulations allow that nurses work fewer than 40
hours a week.

b. #New government regulations allow that nurses work at most 40
hours a week.

I will take the structure where the numeral modifier takes wide scope to be the
basic structure from which I derive most readings. In the case of existential
modals, this structure coincides with the only possible scope configuration. The
case with universal modals is slightly different. I will return to this point in
section 4.1.

3.3.2 Optional flattening

The second assumption I make has to do with the role of the modal. Coppock
and Brochhagen (2013), inspired by Kratzer and Shimoyama (2002), assume
that a modal flattens the set of possibilities in its scope. That is, when the
prejacent of a modal contains multiple possibilities, the modal returns the union
of these possibilities. For them, this mechanism is linked to scope. They assume
that all possible scope configurations between modified numerals and modals are
possible, and the modal can flatten only when it takes wide scope.

To see how this mechanism works, consider a sentence where a universal
modal occurs with at least. When at least takes wide scope, the denotation
Coppock and Brochhagen derive is as in (76).8

(76) at least 2 > 2 → {2p2, 2p3, 2p4, ... }

This denotation is inquisitive, and therefore an epistemic inference is derived:
the speaker is unsure about whether two is required, whether three is required,
etc.

8Coppock and Brochhagen’s semantics of at least and at most is very different from mine.
I use their analysis here purely to illustrate how flattening works.
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When the modal takes wide scope, however, it flattens the possibilities cre-
ated by at least, returning a single possibility, as in (77). This denotation is no
longer inquisitive, and as a result, no epistemic inference is derived.

(77) 2 > at least 2 → {2 ∪ {p2, p3, p4, ... }} = {2p2}

The way I use the flattening mechanism is different. As mentioned above, at
least and at most are taken to be focus-sensitive. They therefore interact with
both the ordinary semantic value of their prejacent JαKO and the alternative
semantic value of their prejacent JαKA. My proposal is that a modal flattens
everything it sees: it turns both JαKO and JαKA into singleton sets. Furthermore,
I propose that this flattening mechanism is optional. This optionality is the key
to deriving both the variation and the epistemic reading with only one scope
configuration, which is necessary given that only one scope configuration is
available with existential modals.9

When the modal takes scope under the modified numeral, as it usually does,
its prejacent will not be inquisitive, because it is the numeral modifier that
makes the proposition inquisitive. Therefore, flattening JαKO is vacuous in this
case. Flattening JαKA, on the other hand, will have an effect: it modifies the
alternatives the modified numeral can use when it is merged. As we will see
in the next section, there are some cases where universal modals take scope
over modified numerals. In these cases, flattening JαKO will have an effect: the
numeral modifier will have made the prejacent of the modal inquisitive, and flat-
tening undoes this action. In this case, flattening JαKA will be vacuous. When
the modal is merged, the numeral modifier has already used the alternatives in
its computation, and therefore it no longer matters what the set of alternatives
looks like. This is summarised in (78).

(78) Proposal
Modals optionally flatten both JαKO and JαKA

a. When a modal takes scope under the modified numeral, flattening
JαKO is vacuous (because its prejacent will already be flat) but
flattening JαKA has an effect

b. When a universal modal takes scope over the modified numeral,
flattening JαKA is vacuous (because the numeral modifier has al-
ready used the alternatives at this point) but flattening JαKO has
an effect

I realise that this discussion is rather dry and perhaps difficult to follow without
any examples. I hope the reader will permit me to make two more remarks
on the technical mechanism before moving on to the examples. First, I use
Beaver & Clark’s (2008) theory of focus. Beaver and Clark assume that an

9Although I say here that it is the modal that optionally does the flattening, I believe that
this cannot be true. The reason is that we would need two lexical entries for each modal in
order for it to work: one that flattens and one that does not. A better way to think about
it is that there is a flattening operator that is optionally present in the structure. When it is
present, it needs to be licensed by a modal.
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alternative semantic value JαKA is calculated à la Rooth (1985, 1992) but that a
focus-sensitive operator does not interact directly with this set of alternatives.
Instead, it interacts with it through the Current Question under discussion CQ.
Although the reality is slightly more complex then this, for our purposes here
it suffices to say that the CQ must be a subset of JαKA. The ordered set of
alternatives S that we have already come across is an ordered version of the
CQ.

Second, the set S is thus derived from the set of Rooth-Hamblin alternatives.
It is this set that at least and at most use to set a lower bound and an upper
bound respectively. maxAL, on the other hand, uses another ordered set of
alternatives AL. This set is not generated via the Rooth-Hamblin alternatives
but is a separate set. As the Rooth-Hamblin alternatives can be flattened by
modals, so can the CQ and S, which are derived from the Rooth-Hamblin
alternatives. AL, on the other hand, exists as a separate entity that is unaffected
by such flattening operations. The intuition behind this idea is that although
a set consisting of multiple possibilities is sometimes flattened into a single set,
this does not mean that there are no alternatives left to the proposition that
is being uttered. Regardless of what happens during a particular computation,
there can always be alternatives to any proposition. For instance, when we
use Kratzer and Shimoyama’s (2002) operation of Existential Closure, which
puts all the disjuncts of a disjunction into one possibility (i.e. it flattens the
disjuncts), we do not want to say that the disjuncts no longer give rise to two
(or more) alternative possibilities in the minds of the speakers.

Similarly, if we flatten the possibilities in a sentence with the German free
choice indefinite irgendein in (79), also from Kratzer and Shimoyama (2002), the
modal may flatten the alternatives (of the form Marry marries doctor x, Mary
marries doctor y, ...) but we still need alternatives to (79), for instance to
calculate the run-of-the-mill quantity implicature Mary does not have to marry
all doctors. Under the present assumptions, S could be flattened by the modal
while AL would remain intact for the computation of quantity implicatures.

(79) Mary
Mary

muss
must

irgendeinen
irgendein

Arzt
doctor

heiraten.
marry.

‘Mary has to marry a doctor, any doctor is a permitted option.’

Finally, if we have a sentence like (80) and the modal flattens the alternatives,
which, as we will see, are of the form Robin and Cormoran solved n crimes),
this does not mean that potential alternative numbers of crimes are suddenly
not relevant any more for the speaker.

(80) Robin and Cormoran were required to solve at least three crimes.

Using a sentence with a numeral always involves reasoning about numbers and
possible alternative numbers and a scale is needed for this. To this end, the scale
AL is independent of the set JαKA and is therefore immune to any operations in
the computation that might affect the alternatives. This distinguishes it from
S, which has no such immunity. Below it will become clear why maxAL uses
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AL rather than S.

3.4 Natural combinations

Now that we are equipped with all this technical paraphernalia, let us return
to the data. We will first go through the two combinations that are intuitively
the most felicitous ones: at least with a universal modal and at most with an
existential modal. We begin with (3).

(3) Jane is required to invite at least two friends.

Let us first see what reading we derive when the modal does not do any flat-
tening. As mentioned before, I assume wide scope readings for the numeral
modifier throughout this section. The prejacent of at least is then as in (81).

(81) JJane is required to invite at least two friendsKO = {2p2}

The relevant alternatives are is given in (82).

(82) JJane is required to invite at least two friendsKA = {2p0,2p1,2p2,2p3, ...}

As explained above, for my purposes it suffices that the CQ be a subset of the
set of Rooth-Hamblin alternatives. In this case and all other cases in this paper,
the CQ is equivalent to the set of alternatives JαKA.

(83) CQ= JJane is required to invite at least two friendsKA = {2p0,2p1,2p2,2p3, ...}

The alternatives are ordered as in (84), which is an entailment ordering: if you
invite two or more friends in every world, you also invite one or more friends in
every world. As before, AL is equivalent to S.

(84) S = AL = 2p0 < 2p1 < 2p2 < 2p3 < 2p4 ...

Applying at least to (81) yields (85).

(85) {2p2 ∧ ¬2p3,
∪ {2p3 ∧ ¬2p4,2p4 ∧ ¬2p5, ...}}

There are two possibilities in this proposition. The first possibility, 2p2∧¬2p3,
is obtained simply by applying maxAL to 2p2. The set {2p3 ∧ ¬2p4,2p4 ∧
¬2p5, ...} is obtained by applying maxAL to all higher alternatives, and this set
of possibilities is turned into a set of worlds by applying the union operation.
2p2 ∧ ¬2p3 says that Jane invites two or more friends in every world, but
she does not invite three or more friends in every world. In other words: two
friends is sufficient; three friends is not required. The other alternatives have
the same meaning except with higher numbers. There are two possibilities, so
the proposition is inquisitive. This means that epistemic inferences are derived:
the speaker is not sure if Jane has to invite two friends and for all numbers above
two, the speaker is also not sure that Jane has to invite that many friends. This
corresponds to the epistemic reading of (85).
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Note that ∪{2p3 ∧ ¬2p4,2p4 ∧ ¬2p5, ...} is not equivalent to 2p3. This is
because there must be some number n, somewhere down the line, for which,
¬2pn holds. This is incompatible with 2p3, which includes all numbers from
three to infinity. The fact that there is some number n such that ¬2pn means
that there is a limit to what is required; it is not the case that Jane has to invite
an infinite number of friends. There is some number n such that n is a sufficient
number of friends for Jane to invite.

Now let us see what happens when the modal flattens everything it sees.
The prejacent of the modal is p2; the proposition that Jane invites two friends.
The prejacent of the modal is given in (86).

(86) JJane invites two friendsKO = {p2}

This is not an inquisitive proposition, so JαKO is already a singleton set: there
is nothing there for the modal to flatten. But assuming that the numeral is the
focused element in the sentence, JαKA contains multiple possibilities, as shown
in (87).

(87) JJane invites two friendsKA = {p0, p1, p2, ...}

The modal flattens this set, as in (88).

(88) JJane invites two friendsKA = {{w[0], w[1], w[2], ...}} = {p0}

Adding the lexical meaning of the modal yields the ordinary meaning in (89)
and the alternatives in (90).

(89) JJane is required to invite two friendsKO = {2p2}
(90) JJane is required to invite two friendsKA = {2p0}

The CQ is a subset of JαKA. Given that JαKA only contains one element, the
CQ is now equivalent to it, as shown below.

(91) CQ ⊆ JαKA = {2p0}

The set AL, on the other hand, is independent from JαKA and therefore stays
as it is. Thus, we have:

(92) S = 2p0

(93) AL = 2p0 < 2p1 < 2p2 < 2p3 < 2p4

Now we are ready to add at least. The meaning of (3) with a flattened set of
alternatives is given in (94).

(94) {2p2 ∧ ¬2p3}

This meaning comes about as follows. First, we apply maxAL to the prejacent
2p2. This yields 2p2 ∧ ¬2p3. Then we take all higher alternatives in S and
apply maxAL to them. But the modal has thrown all higher alternatives of S in
the bin. We only have 2p0 left, which is ranked lower than 2p3. Furthermore,
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even if we had higher alternatives, 2p2 is no longer in the set of alternatives,
so the part p′ >S p in the definition of at least is vacuous; there is no longer
a p to compare p′ to. Thus, we only derive the possibility 2p2 ∧ ¬2p3. This
is where we need a separate scale for maxAL. If maxAL used S, it would be
unable to apply to the prejacent because there is no prejacent left in S. The fact
that maxAL uses AL enables it to yield (94) even when S has been flattened to
contain only 2p0.

The proposition in (94) is not inquisitive, so we do not derive epistemic
implicatures. The meaning is that Jane is required to invite two or more friends
but she is not required to invite three or more friends. This is the authoritative
reading with a variation inference. She has to invite at least two friends, and
she is free to choose a number of friends to invite in the [3-∞) range. In other
words, it is not the case that there is some number higher than the number two
such that she has to invite that number of friends. So, when the modal does
not do any flattering, we derive the epistemic reading. When the modal does
flatten, we get the authoritative reading.

Now let us move on to the other natural combination: at most with allowed,
exemplified in (2).

(2) Jane is allowed to invite at most two friends.

S is now as in (95), which is again an entailment ordering.

(95) S = AL = ♦p0 < ♦p1 < ♦p2 < ♦p3 < ♦p4 ...

Let us first assume that the modal does not do anything except add its regular
meaning to the mix, as in (96).

(96) JJane is allowed to invite two friendsKO = {♦p2}

Merging at most results in the meaning in (97).

(97) {♦p2 ∧ ¬♦p3,
∪ {♦p0 ∧ ¬♦p1,♦p1 ∧ ¬♦p2}}

maxAL ♦p2 yields the first possibility. The second possibility is the union of the
possibilities maxAL ♦pn for all numbers lower than 2: ♦p0 and ♦p1. The speaker
conveys two possibilities: Jane is allowed to invite two friends but no more or
she is allowed to invite fewer than two friends but no more. In other words:
the upper bound is two or it is lower than two. The fact that the proposition is
inquisitive means that an epistemic implicature can be calculated: the speaker
does not know whether the upper bound is two or some number under two.
This corresponds to the epistemic reading.

Now we will consider the other reading of the sentence, where the modal
puts all possibilities in the alternatives into a single possibility. We start off
with the sister of the modal, given in (98).

(98) JJane invites two friendsKO = {p2}
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The alternatives the modal gets are the ones in (99), and flattening this set
yields (100).

(99) JJane invites two friendsKA = {p0, p1, p2, ...}
(100) JJane invites two friendsKA = ∪{p0, p1, p2, ...} = {p0}

Adding the modal gives us (101) and (102).

(101) JJane is allowed to invite two friendsKO = {♦p2}
(102) JJane is allowed to invite two friendsKA = {♦p0}

Given that S in an ordered version of the CQ and CQ ∈ JαKA, we get (103).
AL, being independent of JαKA, remains unaffected by this change, as shown in
(104).

(103) S = ♦p0

(104) AL = ♦p0 < ♦p1 < ♦p2 < ♦p3 < ♦p4

After adding at most, we get the final meaning in (105).

(105) {♦p2 ∧ ¬♦p3}

As in the at least case, this is simply maxAL applied to the prejacent. This is
possible because while S has been flattened, AL is still as in (95). As for the
other alternatives, there is one alternative that is lower than ♦p2, namely ♦p0,
the only alternative we have left. But according to the definition of at most, we
have to find all p′ <S p. p is the prejacent ♦p2, but ♦p2 has been taken out of
CQ and is therefore no longer ordered by S. As a result, we still cannot pick
out any alternative, and are left with just the first possibility.

(105) says that Jane is allowed to invite two friends but she is not allowed
to invite three friends. Thus, it places an upper bound of two on the number
of friends Jane is allowed to invite. There is no epistemic implicature because
there is only one possibility. This is the authoritative reading we wanted to
derive.

In sum, we derive both an authoritative reading and an epistemic reading
for the two natural combinations, as desired.

3.5 Less natural combinations

I will discuss the less natural readings in a slightly different order. First I will
show how an epistemic reading can be derived for both combinations, and then
I will turn to the variation readings.

(5) is the least natural combination, and it only has an epistemic reading.

(5) Jane is allowed to invite at least two friends.

The ordered alternatives are as in (95) and the denotation is given in (106).
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(52) S = AL = ♦p0 < ♦p1 < ♦p2 < ♦p3 < ♦p4 ...

(106) {♦p2 ∧ ¬♦p3,
∪ {♦p3 ∧ ¬♦p4,♦p4 ∧ ¬♦p5, ...}}

As before, the first possibility is simply maxAL ♦p2. The second possibility is
the result of applying maxAL to the higher alternatives and taking the union of
the resulting set of possibilities. The first possibility says that Jane is allowed
to invite two but not three friends. The second says that she is allowed to invite
three friends but there is some number for which she is not allowed to invite
that many friends. The second possibility is equivalent to (107).

(107) ♦p3 ∧ ∃p′[p′ >S p3 ∧ ¬♦p′]

Together, these possibilities say that either Jane is allowed to invite two friends
but no more, or she is allowed to invite some other number of friends above two,
but there is an upper bound to how many friends she is allowed to invite. The
proposition is inquisitive so the reading is epistemic. Recall from section 3.3 that
sentences with at least and an existential modal only have the stronger epistemic
reading that conveys ignorance about where the upper bound to what is allowed
is and not the weaker epistemic reading that merely conveys ignorance about
which numbers are allowed. The reading I have derived here is thus precisely
the kind of epistemic reading we want: it is not merely an ignorance reading
but more specifically ignorance about where the upper bound is.

We now turn to our final combination in (4), with the ordered alternatives
in (108).

(4) Jane is required to invite at most two friends.

(108) S = AL = 2p0 < 2p1 < 2p2 < 2p3 < 2p4 ...

The reading we derive is shown in (109). The possibilities are derived as usual:
by first applying maxAL to the prejacent of at most and then to the alternatives
that are ordered lower, after which we take the union of the lower alternatives.

(109) {2p2 ∧ ¬2p3,
∪ {2p0 ∧ ¬2p1,2p1 ∧ ¬2p2}}

The first possibility is that Jane has to invite two friends but she need not invite
more than two friends. The second possibility is that there is some number below
the number two such that she has to invite that many friends (this number can
also be zero). This possibility is equivalent to (110) (which is equivalent to its
second conjunct, given that 2p0 is a tautology). There are two possibilities, so
the reading is an epistemic one. The speaker conveys that either Jane has to
invite at least two friends or she has to invite some minimum number of friends
below two. There is ignorance about the lower bound. This is the epistemic
reading we wanted to derive.

(110) 2p0 ∧ ¬∃p′[p′ <S p2 ∧2p′]
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Now let us try to derive variation readings for 3.5 and (107), starting with 3.5.
Flattening gives us a CQ that only contains ♦p0, as before. And like before,
using AL we only derive maxAL ♦p2, because there are no alternatives p′ left
in S such that p′ >S ♦p2. We derive (111).

(111) {♦p2 ∧ ¬♦p3}

This is clearly not a possible reading of 3.5; it says that Jane is allowed to invite
at most two friends. In fact, it is equivalent to the authoritative reading of (2),
in (105). Before I say more about this, let us have a look at the flattened reading
of (107).

When the alternatives are flattened, we are left with a CQ containing only
2p0 again. Given that the prejacent 2p2 is no longer in the set of alternatives,
the part p′ <S p of the denotation of at most cannot pick out any possibilities.
We only derive maxAL 2p2, which is equivalent to (112).

(112) {2p2 ∧ ¬2p3}

This is not an attested reading of (4). It is a reading that sets a lower bound:
Jane must invite at least two friends but she need not invite more. This reading
is equivalent to the variation reading of (3) in (94).

So, (111) is equivalent to (105) and (112) is equivalent to (94). This can also
be seen in the table below, where the readings with a # refer to derived but
unattested readings. In the two ‘authoritative’ rows, at least and at most yield
the same denotation.

at least at most
♦♦♦ aut. (111) #{♦p2 ∧ ¬♦p3} (105) {♦p2 ∧ ¬♦p3}

ep. (106) {♦p2 ∧ ¬♦p3, (97) {♦p2 ∧ ¬♦p3,
∪{♦p3 ∧ ¬♦p4,♦p3 ∧ ¬♦p4, ...}} ∪{♦p0 ∧ ¬♦p1,♦p1 ∧ ¬♦p2}}

222 aut. (94) {2p2 ∧ ¬2p3} (112) #{2p2 ∧ ¬2p3}
ep. (85) {2p2 ∧ ¬2p3, (109) {2p2 ∧ ¬2p3,

∪{2p3 ∧ ¬2p4,2p4 ∧ ¬2p5, ...}} ∪{2p0 ∧ ¬2p1,2p1 ∧ ¬2p2}}

Table 1: Summary of denotations

In table 2 I have summarised the types of readings this analysis derives for each
combination, again with # signifying unattested readings.

at least at most
♦♦♦ authoritative #UB UB

epistemic LB, UB ignorance UB, UB ignorance
222 authoritative LB #LB

epistemic LB, LB ignorance UB, LB ignorance

Table 2: Summary of readings
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As this table shows, the epistemic readings have two kinds of bounds: the bound
set by the lexical item (a lower bound for at least and an upper bound for at
most) and the bound that the epistemic inference is about, set by the modal
(a lower bound for a universal modal and an upper bound for an existential
modal). Below I will go through each combination.

For the natural combination 2 + at least, the account derives an authorita-
tive reading that sets a lower bound. It also derives an epistemic reading that
sets a lower bound, and the ignorance on the part of the speaker is also about
where lower bound is. That is, for (3), repeated below, the epistemic reading is
that there is some lower bound of friends Jane needs to invite, and the speaker
does now know whether this lower bound is two or higher.

(3) Jane is required to invite at least two friends.

Similarly, for our other natural combination ♦ + at most, the authoritative
reading sets an upper bound, and the epistemic reading conveys ignorance about
the upper bound. For (2), there is some upper limit to the number of friends
Jane can invite, and this upper limit is two or lower.

(2) Jane is allowed to invite at most two friends.

For these two natural combinations, then, the bound set by the modal corre-
sponds to the bound set by the numeral modifier.

For (5), which exemplifies the less natural ♦ + at least combination, the
epistemic reading is that there is some upper bound to the number of friends
Jane is allowed to invite, and this upper bound is at least two. Thus, the
ignorance is about where the upper bound is, but the sentence still conveys a
lower bound: the upper bound is two or higher than two.

(5) Jane is allowed to invite at least two friends.

The other less natural combination (4) works the same way, except that the
bounds are now flipped. In the epistemic reading, the ignorance is about the
lower bound to what is required, but there is an upper bound to this lower
bound: the lower bound is no higher than two.

(4) Jane is required to invite at most two friends.

As mentioned above, the modal determines the kind of bound the speaker is
ignorant about, with ♦ yielding a lower bound and 2 yielding an upper bound.
The numeral modifier determines the bound of the variation reading and the
‘bound of the bound’ of the ignorance reading. For instance, using a universal
modal as in (107) means that the ignorance is about the lower bound, but adding
at most to the mix sets an upper bound to where this lower bound can be.

In all the cases I have discussed so far, the bound set by the numeral modifier
is maintained. So, even though the ‘ignorance bound’ contributed by the modal
may not be the same as the bound set by the numeral modifier, the numeral
modifier still contributes a limit to this ‘ignorance bound’. In all of these cases,
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at least contributes a lower bound and at most contributes an upper bound.
Now let us consider the non-attested variation readings we have derived for

the ♦ + at least combination and the 2 + at most combination. Here we see
that the bound of the modal has prevailed, and there is nothing left of the bound
of the modified numeral. The at least example sets an upper bound and the at
most example sets a lower bound. I propose that this is why these readings are
not attested. The primary meaning contribution of at least and at most is to
set a bound, and in (111) and (112) this bound has completely disappeared.

One way to explain this by saying that there is a principle in language that
states that when a lexical item contributes a meaning, this meaning must be
maintained throughout the rest of the derivation. This is reminiscent of Buccola
and Spector’s (2016:165) ‘Pragmatic economy constraint’ on numerals. This
constraint says that a sentence with a numeral n is infelicitous if replacing this
numeral by a different numeral m would result in the same meaning. Minimally
rephrasing their constraint for our current purposes as in (113) would not work,
however:

(113) Pragmatic economy constraint (non-final)
An LF φ containing a numeral modifier M is infelicitous if, for some
N distinct from M , φ is truth-conditionally equivalent to φ[M 7→ N ]

The reason this does not work is because it would rule out both denotations
on the second and the fourth row of table 1 instead of only the denotations
carrying a #. In other words, if the constraint in (113) held, we would expect
all authoritative readings ((111), (105), (94), (112)) to be bad. This indicates
that we must be more specific about which numeral modifier survives and which
is ruled out. This is done by (114).

(114) Pragmatic economy constraint
For lower-bounded and upper-bounded numeral modifiers M , an LF
φ containing M is only felicitous if φ sets the same bound as M .

This constraint correctly rules out (111) and (112) but not (105) and (94). (114)
can be viewed as an economy principle: it is not efficient to use an expression
with a certain meaning (in particular: a lower bound or upper bound) only to
subsequently remove this meaning in the computation.

Another way to think about the reason why (111) and (112) are not attested
is to invoke a blocking mechanism. Nouwen (2010) also uses such a mechanism
to block certain readings with class B modifiers. His way of implementing the
notion of blocking is that whenever a marked form and an unmarked form convey
the same meaning, the unmarked form is given precedence, and the marked form
is blocked from having this meaning. For him, the competition is between class
B modifiers and bare numerals, with the bare numeral denotations being less
marked. In this case, we also have two cases where the meanings are identical:
(111) is identical to (105) and (112) is identical to (94). But (105) and (94)
get their meaning in a less convoluted way. In these cases, the bound set by
the numeral modifier corresponds to the bound set by the modal. In the case
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of (111) and (112), the derivation involves a reversal of the bound. This is not
quite the same as the notion of marked versus unmarked meanings. Instead,
the difference is that in one case, the derivation involves the rather complex
and counterintuitive step of turning a lower bound into an upper bound or vice
versa, while the other derivation does not. The simpler derivation is preferred.
This could be a constraint on language proper in the sense that it is not only
forms but also derivations that compete with one another. This would need to
be made more precise, because in the mechanism as I have proposed it there
is not a single step we can point at that is more complex than some step in
the derivation that is not blocked. It could also be a cognitive constraint: it is
cognitively costly to use an expression that sets a lower bound in a proposition
that sets an upper bound or vice versa. This could be because it requires
changing the meaning from one bound to the other mid-computation.

Thus, the idea is that it is not economical to use an expression with a
certain meaning component and to then delete this meaning component in the
derivation, meaning that there is nothing left of it in the proposition we derive.

4 Benefits of the account

As shown in the previous section, the present account is the first that derives
the observed readings for all combinations of modals and modified numerals.
Here I discuss three further benefits of the account. First I show that the
uncommon but possible authoritative readings of sentences with at most and a
universal modal can still be derived. Then I demonstrate that this account is
also the first that can derive ignorance and ‘authoritative’ (variation) readings
of sentences with universal nominal quantifiers and numeral modifiers. Finally
I discuss the merits of using this particular mechanism in inquisitive semantics
to derive ignorance readings.

4.1 Authoritative readings with at most and universal
modals

In this section I will return to example (4). I have called this one of the less
natural combinations and said that we can only derive an epistemic reading for
it.

(4) Jane is required to invite at most two friends.

It is clear that (2) is a better candidate for expressing that Jane is not allowed
to invite more than two friends.

(2) Jane is allowed to invite at most two friends.

However, (4) still does have an authoritative reading. So far I have not derived
this reading. It turns out that this is actually the surface scope reading of (4),
with the structure in (115).
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(115) [ 2 [ Jane invites [ at most [ [ 2 many ] friends ] ] ] ]

Recall that this sentence can have a surface scope structure because nothing
stops modified numerals from taking scope under universal modals.

The prejacent of at most, with focus on the numeral, gives rise to the Rooth-
Hamblin alternatives in (116).

(116) JJane invites [two]F friendsKA = {p0, p1, p2, p3...}

As usual, the CQ is derived from this set and is ordered as S in (117), and we
have an equivalent AL.

(117) S = AL = p0 < p1 < p2 < p3 < p4 ...

Adding at most, we derive (118) as the meaning of the prejacent of the modal.

(118) JJane invites at most two friendsKO = {p2 ∧ ¬p3, {w[0], w[1]}}

This is an inquisitive proposition containing two possibilities: the possibility
that Jane invites exactly two friends and the possibility that she invites fewer
than two friends.

We saw above that a modal optionally flattens both the ordinary semantic
value and the alternative semantic value of its prejacent. In this case, flattening
JαKA will not do much, because there is no operator above the modal that
needs to use the alternatives. At most has already done this below the modal.
Flattening JαKO, on the other hand, does have an effect. As shown in (119),
the modal now turns the inquisitive proposition in (118) into a non-inquisitive
proposition containing only one possibility.

(119) {2 ∪ {p2 ∧ ¬p3, {w[0], w[1]}}} = {2{w[0], w[1], w[2]}}

(119) says that in all accessible worlds, Jane invites between zero and two friends
and no more. This is the authoritative reading of (107).

Note that it is also possible, though not necessary, to derive an additional
authoritative reading with a universal modal and at least this way. For (3), the
prejacent of the modal is as in (120).

(36) Jane is required to invite at least two friends.

(120) {p2 ∧ ¬p3, p3}

When the modal flattens (120), we get (121). This says that in all worlds, Jane
invites two or more friends.

(121) {2 ∪ {p2 ∧ ¬p3, p3}} = {2p2}

Thus, the surface scope configuration that is available when modified numerals
occur with universal modals allows for the generation of an authoritative reading
with at most, which we indeed observe. It also enables the calculation of a
harmless extra authoritative reading with at least.
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4.2 Modified numerals and universal quantifiers

Sentences with universal modals and class B numeral modifiers, such as (122),
also have two readings.

(122) Everyone adopted at least two cats.

The most obvious reading is a non-epistemic reading: everyone adopted two
cats or more. In parallel to the authoritative readings we have seen, this reading
comes with a variation inference: not everyone adopted the same number of cats.
That is, (122) is infelicitous when the speaker knows that everyone adopted, say,
exactly ten cats. There is also an epistemic reading, which is a bit more difficult
to get: everyone adopted the same number of cats, and this number is two or
higher. We know that at least cannot move over everyone by itself since this
instantiates a violation of the Heim-Kennedy Generalisation (Kennedy, 1997;
Heim, 2000). Therefore, (122) represents another case where we only get one
scope configuration but we do observe two readings, just like the cases where
numeral modifiers must take scope over existential modals.

Using the analysis laid out above, we can actually derive both readings from
the surface scope configuration. The only assumption we need, which may or
may not be a slightly controversial one, is that universal quantifiers also have
the ability to optionally flatten their prejacent. Let us go through the derivation
of (122) to see how this works. The denotation of the prejacent of everyone is
given in (123).

(123) {λx . maxAL[∃y[#y = 2 ∧ cats(y) ∧ adopts(x, y)]] , λx . ∪ { maxAL

p′ | p′ >S [∃y[#y = 2 ∧ cats(y) ∧ adopts(x, y)]]}}

This meaning comes about through the use of the denotation of at least in (60)
where α is 〈〈e, p〉, p〉 and β is 〈e, p〉, as in (64).

(23) Jat leastKS = {λαλβ.maxAL (α(β)) , λαλβ.∪{maxAL p
′ | p′ >S α(β)}}

(27) Jat leastKS = {λP〈〈e,p〉,p〉λQ〈e,p〉.maxAL (P(Q)) , λP〈〈e,p〉,p〉λQ〈e,p〉. ∪
{maxAL p′ | p′ >S P(Q)}}

(123) gives us two possibilities: the exactly 2 possibility and the 3 or more
possibility. Adding the universal quantifier yields (124).

(124) {∀x [ maxAL[∃y[#y = 2 ∧ cats(y) ∧ adopts(x, y)]]] , ∀x [ ∪ { maxAL

p′ | p′ >S [∃y[#y = 2 ∧ cats(y) ∧ adopts(x, y)]]]}}

If Pn stands for ‘the set of people who adopted n cats’, the meaning in (124)
can be represented as in (125).

(125) {∀xP2 ∧ ∀x¬P3 , ∪{∀xP3 ∧ ∀x¬P4 , ∀xP4 ∧ ∀x¬P5, ...}}

The first possibility is the possibility that everyone adopted two cats and no
more. The second possibility is the union of all possibilities such that everyone
adopted a higher number than two cats n and no-one adopted more than n cats.
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Thus, either everybody adopted exactly two cats or everybody adopted some
higher number of cats. Either way, everyone adopted the same number of cats.
This proposition is inquisitive, so we derive the inference that the speaker does
not know which possibility is true. This is the epistemic reading of (122).

To derive the non-epistemic reading, the universal quantifier must flatten
(123). Note that this is a case of the relevant operator flattening JαKO rather
than JαKA, as in section ?? (i.e. this corresponds to the mechanism described in
(78-b) except that a universal quantifier is used instead of a universal modal).

The union of the two sets in (123) is given in (126): exactly 2 or 3 or more
comes down to at least 2.

(126) {λx.∃y[#y = 2 ∧ cats(y) ∧ adopts(x, y)]}

Adding in the universal quantifier, the proposition we end up with is the one in
(127).

(127) {∀x.∃y[#y = 2 ∧ cats(y) ∧ adopts(x, y)]}

This is a singleton set, so it is not inquisitive. It says that for everyone x there is
a certain number of cats y that x adopts, and the cardinality of y is 2. Given the
one-sided meaning of the bare numeral 2, (127) has a lower-bounded reading:
everyone adopted two or more cats. This is the most prominent reading of (122)
without an epistemic implicature.

Thus, the optional flattening mechanism can also derive the two readings
we observe with universal quantifiers, without relying on any non-existent scope
configurations. As degree-based accounts of modified numerals do use two scope
configurations to get two readings, the Heim-Kennedy Generalisation prevents
them from predicting the attested ambiguity in cases with nominal quantifiers.
My account solves this issue.

4.3 A note on the nature of epistemic inferences

Finally, I will make some observations about the exact nature of the epistemic
inferences we have derived. Coppock and Brochhagen (2013), who were the
first to use inquisitive semantics in an account of modified numerals, derived
meanings of the form in (129) for sentences like (128).

(128) Malika adopted at least two cats.

(129) {p2, p3, p4, p5, ...}

Thus, for each number from two upwards, the proposition contains the possi-
bility that Malika adopted that number of cats.

Ignorance was derived as a Quality implicature, but in a slightly different
way than I have done here. Coppock & Brochhagen posited the so-called Maxim
of Interactive Sincerity. This Maxim said that when a proposition is interactive,
it must also be interactive in the speaker’s information state. Here interactivity
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means ‘containing multiple possibilities’.10 Informally, when you utter a propo-
sition with different possibilities, those possibilities must be possibilities in your
mind.

Schwarz (2016) pointed out that there is a problem with this way of deriving
epistemic inferences: you cannot utter (128) unless you consider it a possibility
that Malika adopted exactly two cats. In general, the numeral modified by at
least or at most must always correspond to one of the possibilities the speaker
considers. Coppock and Brochhagen do not derive this. Say that you think
that Malika adopted either nine or ten cats, and you utter (128). Coppock &
Brochhagen predict that this is felicitous. After all, the number is two or higher
and the proposition is interactive in your information state.

This shows that the epistemic inference Coppock & Brochhagen derive is
too weak in general. For instance, according to their account, you can say at
least one when you know that the actual number is either one million or two
million, and you can say at most a thousand when you are unsure whether the
number is one or two.

They could remedy this by saying that the possibilities in the speaker’s
information state must be equivalent to the possibilities in the proposition. A
speaker who utters (128) must then consider all the possibilities in (129) to be
potentially true. But now the epistemic reading is too strong. Say that there is
a particular shelter where you can only adopt pairs of two cats. Then a speaker
who knows this and who also knows that Malika adopted a certain number of
cats from this shelter can felicitously utter (128) even though all possibilities pn
where n is an odd number are not in the speaker’s information state.

Ciardelli et al. (2016), inspired by Quantity implicature-based accounts such
as Büring (2008), Schwarz (2013), and Kennedy (2015), solve this problem by
saying that (128) denotes the possibilities in (130): either Malika adopted ex-
actly two cats or she adopted some number of cats above two.

(130) {p2 ∧ ¬p3, p3}

Now we can say that the possibilities in the speaker’s information state must
correspond to the possibilities in the proposition and generate the right impli-
catures that way. Either the number in the prejacent of the modified numeral
is the right number or it is some number higher than that number, but not
all higher numbers have to be live possibilities for the speaker. I have followed
Ciardelli et al. (2016) in adopting this method, and therefore my analysis, too,
generates the right kinds of implicatures.

As a final remark, quality implicatures are more difficult to cancel than quan-
tity implicatures, as mentioned by Ciardelli et al. (2016). As can be observed
in (131), this is a correct prediction.11

10The reason why the terminology is different is because Coppock & Brochhagen use Inq∪
instead of InqB, which allows nested possibilities. In this framework, an interactive propo-
sition is a proposition that contains multiple possibilities. Interactivity does not necessarily
imply inquisitivity, because for a proposition to be inquisitive it has to contain at least two
independent possibilities.

11But see Alexandropoulou (2018), chapter 5, for a more careful discussion of these data
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(131) a. Malika adopted at least two cats. #In fact, she adopted four.
b. Malika adopted more than two cats. In fact, she adopted four.

Adding the information that Malika adopted four cats implies exact knowledge
of the number of cats she adopted, and this is incompatible with the epistemic
inference of at least, making (131-a) infelicitous. On the other hand, it is fine
to add this information to a more than sentence like in (131-b), which suggests
that more than either does not give rise to epistemic inferences or gives rise to
weaker, perhaps quantity, implicatures.

5 Conclusion

In this paper I presented an account of the behaviour of class B numeral mod-
ifiers. The analysis was based on the notion that these numeral modifiers are
focus-sensitive operators and interact with the QUD through Beaver & Clark’s
(2008) focus principe. In addition, an optional flattening mechanism was intro-
duced to account for the ambiguity we see when class B modifiers occur with
modals.

This way of analysing the data takes into account the scopal behaviour of
these numeral modifiers as well as the fact that certain combinations of modifiers
and modals are more natural than others, and these combinations are also more
likely to give rise to authoritative readings.

Finally, the account correctly derives a strong semantic upper bound for cases
where at most combines with an existential modal. Unlike previous accounts,
it also captures interactions between class B modifiers and universal nominal
quantifiers, which give rise to an ambiguity that is parallel to the ambiguity
observed in the modal domain.
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