Two kinds of modified numerals

Class A / B distinction (Nouwen, 2010): classification of modifiers into two categories: those that give rise to obligatory ignorance inferences (class B) and those that do not (class A)

(1) Class A

I know exactly how many books I have, and it's \{ more than / fewer than under / over $\} 200$.
(2) Class B
\#| know exactly how many books I have, and it's \{at least / at most minimally / maximally / up to \} 200 .

Upper-bounded numeral modifiers

- Our focus: the bounds of numeral modifiers

- Up to behaves differently from other upper-bounded numeral modifiers

1. NPI licensing (Schwarz et al., 2012):
(3) a. $\{$ At most $/$ Fewer than $/ * U$ p to $\}$ five students have ever ben in this cave.
b. $\begin{aligned} & \text { At most / Fewer than / } \\ & \text { damn about Pavarotti. to }\} \text { three students give a }\end{aligned}$ damn about Pavarotti.
2. Cancellable upper bound (Blok, 2015):
(4) a. \#At most ten people died in the crash, perhaps even more. b. \#Fewer than ten people died in the crash, perhaps even more.
3. Non-cancellable lower bound (Blok, 2015):
(5) a. At most three students will show up to the lecture, if any. b. ? Fewer than three students will show up to the lecture if any c. \#Up to three students will show up to the lecture, if any.

Entailed and implicated upper bounds (Blok, 2015)

- Up to asserts a lower bound; at most and fewer than do not
- Up to implicates an upper bound; at most and fewer than assert an upper bound

	Lower bound
Upper bound	
at most 10	-
fewer than 10	-
up	semantic
up to 10	semantic
semantic	
pragmatic	

(6) Up to ten people died in the crash.

- Semantics of (6): for every number on a scale [1...10], the speaker considers it possible that that many people died in the crash
- Implicature for (6): for every number in [11... ∞), the speaker does not consider it possible that that many people died in the crash
(7) \{At most ten / Fewer than eleven \} people died in the crash.
- Semantics of (7): MAX ${ }_{n}$ [(the speaker considers it possible that) \boldsymbol{n} people died in the crash] $=10$

Additional evidence: interaction with evaluative predicates

- Evaluative adverbs target the assertion of an utterance rather than its implicature (Nouwen, 2006):
(8) a. Fortunately, some students attended the wedding.
b. Fortunately, the soup is warm.
- This also holds for up to, at most, and fewer than:
(9) a. Fortunately, up to 100 people will attend my wedding.
b. Fortunately, $\{$ at most / fewer than \} 100 people will attend my
wedding. wedding.
- Related notion: directivity (Nouwen, 2010b): certain quantifiers (such as up to n) highlight the elements for which the predicate holds, while others (such as at most / fewer than n) highlight the elements for which the predicate does not hold
- Another factor: granularity/distance (Cummins, Sauerland, and Solt 2012):
(11) John's birthplace has more than 1000 inhabitants.
\nrightarrow John's birthplace doesn't have more than 1001 inhabitants.

$$
\rightarrow \text { John's birthplace doesn't have more than a million inhabitants. }
$$

\rightarrow John's birthplace doesn't have more than a million inhabitants.

Research questions

- Is it the case that the upper bound of up to is cancellable (which would support an implicature-based account)?
- If so, to what extent?
(experiment $1 \& 2$)
- Does distance play a role? (experiment 2)

$$
\begin{aligned}
& \text { (10) a. In the airplane crash, \{few / not quite all / at most ten / fewer } \\
& \text { than ten\} passengers were killed, which is a good thing. } \\
& \text { b. ?In the airplane crash, a few a almost all up to ten\}. } \\
& \text { passengers were killed, which is a good thing. }
\end{aligned}
$$

The role of distance in implicature calculation

(ex 2)

- 1st sentence:

\triangleright Naturally occurring sentences adapted from HNC
$\triangleright n$: almost exclusively non-round numbers

- 2nd sentence:
\triangleright Statement about a specific instance
$\triangleright \boldsymbol{m}$ (discrepancy conditions):
- $\boldsymbol{m}<\boldsymbol{n}$ 'under'
- $\boldsymbol{m}>\boldsymbol{n}$ 'over
\triangleright Small distance between \boldsymbol{m} and \boldsymbol{n}

Methods (b)

- Numeral modifier x Discrepancy
- Control: fewer than: asserted upper bound (Hackl 2000; Nouwen, 2010)
- 12 items, rotated through (6) lists
- 14 fillers (7 coherent discourses \& 7 contradictory discourses)
- 143 native speakers of Greek* (98 female participants, 2 no gender info; mean age: 32.8; age range: 19-67)
- Filled in on-line (created on uvw. surveymonkey. com)

Conclusions

'Under' condition: Conclusion

- In a natural discourse setting (Exp. I)
\square Lower rates in the 'under' condition for up to
\triangleright Possibly associated with directivity: quantifiers with positive directivity like up to trigger the expectation that higher numbers should be used in subsequent discourse

Experiment II

- Follow-up in English
- Numeral modifiers: fewer/ less than, at most, up to
- Modifications:
\triangleright Fine granularity: \boldsymbol{n} : clearly non-round number
\triangleright Control for \boldsymbol{m} vs. \boldsymbol{n} distance
\triangleright Avoid interpretation of 'over' items as exceptions \rightarrow Different task

Methods (a)

- Compatibility judgement task

CLAIM: Clarendon High School used its smart classrooms 50 times last year
(fewer than //) with $\left\{\begin{array}{c}\text { fewer than/ } \\ \text { less than }\end{array}\right)$
with $\left.\begin{array}{c}\text { less than } \\ \text { at most } \\ \text { up to }\end{array}\right\} \boldsymbol{n}$ students participating in this classroom environment.
FACT: On one occasion the smart classroom was used at Clarendon High School last year, \boldsymbol{m} students participated.

How compatible is the CLAIM with the FACT? $\begin{array}{lllllll}-3 & -2 & -1 & 0 & 1 & 2 & 3\end{array}$
$\begin{array}{cc}\text { completely } \\ \text { incompatible } & \begin{array}{c}\text { completely } \\ \text { compatible }\end{array}\end{array}$

- Claim:

\triangleright Claims with up to \boldsymbol{n} drawn from COCA (Davies, 2008)
$\triangleright n$: clear cases of non-round numbers

- Fact:
\triangleright Highlights a specific instance
$\triangleright \boldsymbol{m}$ (discrepancy conditions):
$\boldsymbol{m}=\boldsymbol{n} * 0.95$ 'under'
$\boldsymbol{m}=\boldsymbol{n} * 0.25$ 'way under'
$m=n * 1.05$ 'over'
- m=n*1.75'way over'

Methods (b)

- Numeral modifier x Discrepancy
- Target items ($\mathrm{N}=28$) rotated through lists
- 30 filler items with quantifiers (10 contradictions, 10 entailments, 10 implicatures)
- 45 participants on Amazon's Mechanical Turk (31 female participants; mean age: 38.98; age range: 21-59)

Results

- 'Over' condition: Significantly higher scores for up to than for fewer than and at most $(\beta=.7879, S E=.1756, p<.01$ and $\beta=.639, S E=.17, p<.01$, respectively)
- 'Way over' condition: Higher scores for up to than for fewer than (significantly) and at most (marginally) $(\beta=.41, S E=.176, p<.05$ and $\beta=.348, S E=.19, p=.07$, respectively)
- Scores for 'over' significantly higher than for 'way over' for each modifier, with the smallest effect for fewer than ($\beta=.69, S E=.170, p<.01$ vs. $\beta=.842, S E=.192$, $p<0.01$ for at most and $\beta=.824, S E=.164, p<0.01$ for up to)
- 'Under' and 'way under' conditions: No differences between the modifiers and within each modifier ($\boldsymbol{p}>.1$)
- No significant difference between fewer than and at most ($\boldsymbol{\rho}>.1$)

'Over' conditions: Overall conclusions

- The upper-bound construal of
\triangleright up to is pragmatically derived
\triangle at most is part of its lexical semantics
in favour of Blok (2015)
Distance affects the degree to which the upper-bound construal is drawn

- Effect of distance

\triangleright Scalar/semantic distance - similar findings for other scalar terms (Beltrama and Xiang, 2013; van Tiel et al., 2014): e.g., many/some \leadsto not all $>$ many/some \leadsto not most
\triangleright Distance in rates may be mapped onto actual numeric distance \rightarrow Effect for all numeral modifiers
\triangleright Extreme values ruled out by Relevance \rightarrow Effect for all numeral modifiers

- Likert scale (vs. binary judgment task): Good metric for semantic \neq pragmatic inferences (Cummins \& Katsos, 2010; Hansen \& Chemla, 2013)
\triangleright Choice of the particular Likert scale is irrelevant (contra Cummins \& Katsos, 2010)
\triangleright Criterion: Difference from contradictions (here: difference from control items with fewer than in the 'over' condition)
\triangleright Greater range of ratings also a criterion (variation among speakers)?

