The extent of upper-bound construals among different modified numerals

Stavroula Alexandropoulou
Yaron McNabb
Sofia Bimpikou
Dominique Blok

Rick Nouwen

Universiteit Utrecht
MXPRAG
June 22015

Inferences and modified numerals

- Modified numerals give rise to wide variety of inferences
- Example 1: variation inferences (Nouwen, 2015)
(1) The CNN crew got that bit of video, and everyone in the world has seen it at least twenty times. \rightarrow there is no specific n such that everyone has seen the video n many times

Inferences and modified numerals

- Modified numerals give rise to wide variety of inferences
- Example 1: variation inferences (Nouwen, 2015)
(1) The CNN crew got that bit of video, and everyone in the world has seen it at least twenty times. \rightarrow there is no specific n such that everyone has seen the video n many times
(2) A: According to a random sample every bag contains at least 22 sweets.
B: ?Do they all contain the same number of sweets?
Alexandropoulou (to appear)

Inferences and modified numerals

- Example 2: scalar inferences (Krifka, 1999; Fox and Hackl, 2006)
(3) John has three children.
\rightarrow John doesn't have four children.

Inferences and modified numerals

- Example 2: scalar inferences (Krifka, 1999; Fox and Hackl, 2006)
(3) John has three children.
\rightarrow John doesn't have four children.
(4) John has more than three children. \nrightarrow John doesn't have more than four children

Inferences and modified numerals

- Example 2: scalar inferences (Krifka, 1999; Fox and Hackl, 2006)
(3) John has three children.
\rightarrow John doesn't have four children.
(4) John has more than three children. \nrightarrow John doesn't have more than four children
(5) I can say with certainty that John has more than three children.
\rightarrow I cannot say with certainty that John has more than four children

Inferences and modified numerals

- Another factor: granularity/distance (Cummins et al., 2012)
(6) John's birthplace has more than 1000 inhabitants. \nrightarrow John's birthplace doesn't have more than 1001 inhabitants.
\rightarrow John's birthplace doesn't have more than a million inhabitants.

Inferences and modified numerals

- Not all modified numerals give rise to the same kinds of inferences
- Class A/B distinction (Nouwen, 2010a): class B numeral modifiers give rise to obligatory ignorance inferences

Inferences and modified numerals

- Not all modified numerals give rise to the same kinds of inferences
- Class A/B distinction (Nouwen, 2010a): class B numeral modifiers give rise to obligatory ignorance inferences
(7) Class A

I know exactly how much memory my laptop has, and it's \{ more than / less than / under / over \} 4GB.
(8) Class B
\#I know exactly how much memory my laptop has, and it's \{ at least / at most / minimally / maximally / up to $\} 4 \mathrm{~GB}$.

The bounds of modified numerals

- Focus of our study: differences among class B modifiers

The bounds of modified numerals

- Focus of our study: differences among class B modifiers
- NPI licensing data suggest that up to is different from other class B modifiers that set an upper bound (Schwarz, Buccola, \& Hamilton, 2012):
(9) $\{$ At most / *up to $\}$ five students have ever been in this cave.
(10) $\quad\{$ At most / *up to $\}$ three students give a damn about Pavarotti.

The bounds of modified numerals

- Focus of our study: differences among class B modifiers
- NPI licensing data suggest that up to is different from other class B modifiers that set an upper bound (Schwarz, Buccola, \& Hamilton, 2012):
(9) $\{$ At most / *up to $\}$ five students have ever been in this cave.
(10) $\quad\left\{\right.$ At most $/ *_{\text {up }}$ to $\}$ three students give a damn about Pavarotti.
- This suggests at most is downward monotone, which is expected given the fact that it sets an upper bound
- What about up to?

The bounds of modified numerals

- Blok (SALT 2015): Schwarz et al.'s findings extend to directional numeral modifiers crosslinguistically
(11) Greek: mehri
a. Perpatisame mehri tin akri tis limnis. We walked MEHRI the edge of the lake. 'We walked up to the edge of the lake.'
b. Ston anelkistira khorane mehri 5 atoma. In the elevator fit MEHRI 5 people. 'Up to 5 people can fit in the elevator.'

The bounds of modified numerals

- Blok (2015): there are two additional differences between directional numeral modifiers and expressions like at most:

1. Directional numeral modifiers have a cancellable upper bound
2. Directional numeral modifiers set a non-cancellable lower bound

The bounds of modified numerals

- The upper bound of directional numeral modifiers can be cancelled:
(12) a. \#At most ten people died in the crash, perhaps even more.
b. Up to ten people died in the crash, perhaps even more.
(13) a. \#Leftovers keep in the refrigerator for at most one week or more.
b. Leftovers keep in the refrigerator for up to one week or more.

The bounds of modified numerals

- The lower bound of directional numeral modifiers cannot be cancelled:
(14) a. At most three students will show up to the lecture, if any.
b. \#Up to three students will show up to the lecture, if any.

The bounds of modified numerals

Summary of the data:

- Directional numeral modifiers do not license NPIs; expressions like at most do

The bounds of modified numerals

Summary of the data:

- Directional numeral modifiers do not license NPIs; expressions like at most do
- Directional numeral modifiers have a cancellable upper bound; expressions like at most have a non-cancellable upper bound

The bounds of modified numerals

Summary of the data:

- Directional numeral modifiers do not license NPIs; expressions like at most do
- Directional numeral modifiers have a cancellable upper bound; expressions like at most have a non-cancellable upper bound
- Directional numeral modifiers have a non-cancellable lower bound; expressions like at most do not

An implicature-based account

Central proposal (Blok, SALT 2015):

- Directional numeral modifiers assert a lower bound
- Directional numeral modifiers only implicate an upper bound

An implicature-based account

- Directional numeral modifiers convey that the degree predicate they combine with holds for an interval on a scale
- Directional numeral modifiers assert a lower bound: the lowest number on the scale it quantifies over cannot be 0
- There is no maximality operator or other mechanism that sets an upper bound in the semantics

An implicature-based account

- Directional numeral modifiers convey that the degree predicate they combine with holds for an interval on a scale
- Directional numeral modifiers assert a lower bound: the lowest number on the scale it quantifies over cannot be 0
- There is no maximality operator or other mechanism that sets an upper bound in the semantics
- (15) conveys that for every number on a scale [1...10], the speaker considers it possible that that many people died in the crash - without excluding any other possibilities
(15) Up to ten people died in the crash.

An implicature-based account

How can this account for the data?

- As directional numeral modifiers assert a lower bound an implicate an upper bound, the cancellation facts follow straightforwardly from the account

An implicature-based account

How can this account for the data?

- As directional numeral modifiers assert a lower bound an implicate an upper bound, the cancellation facts follow straightforwardly from the account
- The fact that directional numeral modifiers are upward entailing is compatible with the fact that they do not license NPIs

An implicature-based account

Additional evidence: the interaction with evaluative adverbs

- Evaluative adverbs target the assertion of an utterance rather than its implicature (Nouwen, 2006)
(16) a. Fortunately, some students attended the wedding.
b. Fortunately, the soup is warm.

An implicature-based account

Additional evidence: the interaction with evaluative adverbs

- Evaluative adverbs target the assertion of an utterance rather than its implicature (Nouwen, 2006)
(16) a. Fortunately, some students attended the wedding.
b. Fortunately, the soup is warm.
- This also holds for up to and at most
(17) a. Fortunately, up to 100 people will attend my wedding.
b. Fortunately, at most 100 people will attend my wedding.

An implicature-based account

Related notion: directivity (Nouwen, 2010b)
(18) a. In the airplane crash, \{few / not quite all / at most ten\} passengers were killed, which is a good thing.
b. ? In the airplane crash, \{a few / almost all / up to ten $\}$ passengers were killed, which is a good thing.

An implicature-based account

Related notion: directivity (Nouwen, 2010b)
(18) a. In the airplane crash, \{few / not quite all / at most ten\} passengers were killed, which is a good thing.
b. ?In the airplane crash, \{a few / almost all / up to ten \} passengers were killed, which is a good thing.
(19) [In a commercial]
a. Get a discount of up to 50% !
b. ?Get a discount of at most 50% !

Questions

Research questions:

- Is it the case that the upper bound of directional numeral modifiers is cancellable, which would support an implicature-based account?

Questions

Research questions:

- Is it the case that the upper bound of directional numeral modifiers is cancellable, which would support an implicature-based account?
- Is there a contrast between where the lower bound of expressions like at most and directional numeral modifiers start?

Questions

Research questions:

- Is it the case that the upper bound of directional numeral modifiers is cancellable, which would support an implicature-based account?
- Is there a contrast between where the lower bound of expressions like at most and directional numeral modifiers start?
- Does distance play a role?

Questions

Research questions:

- Is it the case that the upper bound of directional numeral modifiers is cancellable, which would support an implicature-based account? (experiment $1 \& 2$)
- Is there a contrast between where the lower bound of expressions like at most and directional numeral modifiers start?
- Does distance play a role?

Questions

Research questions:

- Is it the case that the upper bound of directional numeral modifiers is cancellable, which would support an implicature-based account? (experiment $1 \& 2$)
- Is there a contrast between where the lower bound of expressions like at most and directional numeral modifiers start?
- Does distance play a role? (experiment 2)

Questions

Research questions:

- Is it the case that the upper bound of directional numeral modifiers is cancellable, which would support an implicature-based account? (experiment $1 \& 2$)
- Is there a contrast between where the lower bound of expressions like at most and directional numeral modifiers start?
(future research)
- Does distance play a role? (experiment 2)

Experiments

- Compare at most vs. up to: cancellable upper bound
- Control: fewer than: asserted upper bound (Hackl, 2000; Nouwen, 2010a)

Outline

Inferences and modified numerals

The bounds of modified numerals
An implicature-based account

Questions

Experiments

Experiment 1

Experiment 2

General discussion

Appendix

Experiment 1

- Greek
- NMs:
- lighoteros/-i/-o' apo, adj, 'fewer than' / lighotero apo, adv., 'less than'
- to poli, lit. the much, 'at most'
- mehri: DNM, also used in spatial \& temporal domains

Experiment 1

Coherence judgement task

Experiment 1

Coherence judgement task
Interns in advertisement companies get $\left\{\begin{array}{c}\text { less than } \\ \text { at most } \\ \text { up to }\end{array}\right\} n$ dollars per month; the interns in some of them are paid m dollars per month.

Is the underlined sentence a good continuation of the first sentence?

-3	-2	-1	0	1	2	3
very						very
bad						good

Experiment 1

Coherence judgement task

Interns in advertisement companies get $\left\{\begin{array}{c}\text { less than } \\ \text { at most } \\ \text { up to }\end{array}\right\} n$ dollars per month; the interns in some of them are paid m dollars per month.

Is the underlined sentence a good continuation of the first sentence?

-3	-2	-1	0	1	2	3
very						very
bad						good

- 1st sentence:
- Naturally occurring sentences adapted from HNC (Hellenic National Corpus) (2009)
- n : No real round number

Experiment 1

Coherence judgement task

Interns in advertisement companies get $\left\{\begin{array}{c}\text { less than } \\ \text { at most } \\ \text { up to }\end{array}\right\} n$ dollars per month; the interns in some of them are paid m dollars per month.

Is the underlined sentence a good continuation of the first sentence?

-3	-2	-1	0	1	2	3
very						very
bad						good

- 2nd sentence:
- Claim about a subset which is compatible or incompatible with the assertion in the 1st sentence
- $m: m<n$ ('under') or $m>n$ ('over') (m close to n)

Experiment 1

- Modifier (lighotero(s) apo 'less than/fewer than', to poli 'at most', mehri 'up to') \times Discrepancy ($m<n$ 'under', $m>n$ 'over')
- 12 items, rotated through 6 lists
- 14 fillers (7 coherent discourses \& 7 contradictory discourses), all appearing in every list
- 143 native speakers of Greek*
- Filled in on-line (created on www. surveymonkey.com)

[^0]
Experiment 1

Results

discrepancy

\square over
under

Experiment 1

Results

- 'Over' condition: Significantly higher coherence rates for up to than for fewer than and at most ($\beta=.188$, $S E=.089, p<.05$ and $\beta=.277$, $S E=.09, p<.01$, respectively)

Experiment 1

Results

- 'Over' condition: Significantly higher coherence rates for up to than for fewer than and at most ($\beta=.188$, $S E=.089, p<.05$ and $\beta=.277$, $S E=.09, p<.01$, respectively)
- 'Under' condition: Significantly lower coherence rates for up to than for fewer than and at most ($\beta=-.215$, $S E=.088, p<.05$ and $\beta=-.266$, $S E=.088, p<.001$, respectively)

Experiment 1

Results

- 'Over' condition: Significantly higher coherence rates for up to than for fewer than and at most ($\beta=.188$, $S E=.089, p<.05$ and $\beta=.277$, $S E=.09, p<.01$, respectively)
- 'Under' condition: Significantly lower coherence rates for up to than for fewer than and at most ($\beta=-.215$, $S E=.088, p<.05$ and $\beta=-.266$, $S E=.088, p<.001$, respectively)
- No difference between fewer than and at most $(p>.05)$

Experiment 1

Conclusions

- Differences in 'over' condition:
- The upper bound of up to in Greek is pragmatically derived (Note also: wider range of scores) \rightarrow in favour of Blok's (2015) account
- The upper bound of at most in Greek is part of its lexical semantics \rightarrow in favour of Blok (2015)

Experiment 1

- Differences in 'over' condition:
- The upper bound of up to in Greek is pragmatically derived (Note also: wider range of scores) \rightarrow in favour of Blok's (2015) account
- The upper bound of at most in Greek is part of its lexical semantics \rightarrow in favour of Blok (2015)
- Differences in 'under' condition:
- Up to associated with directivity: $m<n \rightarrow$ less felicitous Interns in advertisement companies get up to 980 dollars per month; the interns in some of them are paid 950 dollars per month.

Outline

Inferences and modified numerals

The bounds of modified numerals
An implicature-based account

Questions

Experiments
Experiment 1
Experiment 2

General discussion

Appendix

Experiment 2

- English
- Utterances with up to Num drawn from COCA Davies (2008)

Modifications in Experiment 2

- 2nd sentences as exceptions in discourse setting \rightarrow different task
- Control for granularity: clearly non-round numbers
- m close to $n \rightarrow$ distance between m and n manipulated

Example stimulus

CLAIM: Clarendon High School used its smart classrooms 50 times last year with $\left\{\begin{array}{c}\text { fewer than } \\ \text { at most } \\ \text { up to }\end{array}\right\} 39$ students participating in this classroom environment.

FACT: On one occasion, the smart classroom was used at Clarendon High School last year, $\left\{\begin{array}{l}10 \\ 37 \\ 41 \\ 68\end{array}\right\}$ students participated.

How compatible is the CLAIM with the FACT?

| -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| completely
 incompatible | | | | | | completely
 compatible |

Experimental design

- Numeral modifier factor: fewer than / at most / up to
- ($\left.n_{\text {claim }}\right)$ vs. $\left(m_{\text {fact }}\right)$ discrepancy conditions:
- under ($m_{\text {fact }}<n_{\text {claim }}$):
- under ($\left.m_{\text {fact }}=n_{\text {claim }} * 0.95\right)$
- way under $\left(m_{\text {fact }}=n_{\text {claim }} * 0.25\right)$
- $\operatorname{over}\left(m_{\text {fact }}>n_{\text {claim }}\right)$:
- $\operatorname{over}\left(m_{\text {fact }}=n_{\text {claim }} * 1.05\right)$
- way over ($m_{\text {fact }}=n_{\text {claim }} * 1.75$)
- Target items ($\mathrm{N}=28$) rotated through lists
- 30 filler items with quantifiers (10 contradictions, 10 entailments, 10 implicatures)
- 45 participants on Amazon's Mechanical Turk

Results

Differences between modifiers

Results

Differences between modifiers

- 'Over' condition: Significantly higher coherence rates for up to than for fewer than and at most ($\beta=.7879, S E=.1756, p<.01$ and $\beta=.639, S E=.17, p<.01$, respectively)

Results

Differences between modifiers

- 'Over' condition: Significantly higher coherence rates for up to than for fewer than and at most ($\beta=.7879, S E=.1756, p<.01$ and $\beta=.639, S E=.17, p<.01$, respectively)
discrepancy
way under
良 under
白 over waver - Way over' condition: Higher coherence rates for up to than for fewer than (significantly) and at most (marginally) ($\beta=.41$, $S E=.176, p<.05$ and $\beta=.348$, $S E=.19, p=.07$, respectively)

Results

Distance

－Rate for＇over＇sig．higher than for ＇way over＇for each modifier，with the smallest effect for fewer than （ $\beta=.69, S E=.170, p<.01$ vs． $\beta=.842, S E=.192, p<0.01$ for at most and $\beta=.824, S E=.164$ ，

追 way over

Results

Distance

－Rate for＇over＇sig．higher than for ＇way over＇for each modifier，with the smallest effect for fewer than （ $\beta=.69, S E=.170, p<.01$ vs． $\beta=.842, S E=.192, p<0.01$ for at most and $\beta=.824, S E=.164$ ，追 way over $p<0.01$ for up to）
－＇Under＇and＇way under＇ conditions：no differences between the modifiers and within each modifier

Conclusions

- Differences in 'over' and 'way over' conditions:
- Blok (2015): at most provides an upper-bound entailment
- Blok: up to's upper bound is pragmatically-derived \rightarrow over \& way over conditions: up to better than at most and fewer than
- Differences wrt Distance:
- Distance affects the upper bound construal

General findings

- Semantic vs. pragmatic upper bound in two different tasks \rightarrow In favor of Blok's pragmatic account
- Distance affects upper bound construal (Experiment 2)
- Up to associated with directivity, thus less compatible with a follow-up focussing on a subset (Experiment 1)

Up for discussion

- Effect of distance
- Scalar/semantic distance - similar findings for other scalar terms (Beltrama and Xiang, 2013; Van Tiel et al., 2014): e.g., many/some \rightsquigarrow not all > many/some \rightsquigarrow not most

Up for discussion

- Effect of distance
- Scalar/semantic distance - similar findings for other scalar terms (Beltrama and Xiang, 2013; Van Tiel et al., 2014): e.g., many/some \rightsquigarrow not all > many/some \rightsquigarrow not most
- Distance in coherence rates may be mapped onto actual numeric distance \rightarrow Effect in all MNs

Up for discussion

- Effect of distance
- Scalar/semantic distance - similar findings for other scalar terms (Beltrama and Xiang, 2013; Van Tiel et al., 2014): e.g., many/some \rightsquigarrow not all > many/some \rightsquigarrow not most
- Distance in coherence rates may be mapped onto actual numeric distance \rightarrow Effect in all MNs
- Likert scale (vs. binary JT) \rightarrow semantic \neq pragmatic inferences (Cummins and Katsos, 2010; Katsos and Bishop, 2011)
- A good metric?

Up for discussion

- Effect of distance
- Scalar/semantic distance - similar findings for other scalar terms (Beltrama and Xiang, 2013; Van Tiel et al., 2014): e.g., many/some \rightsquigarrow not all > many/some \rightsquigarrow not most
- Distance in coherence rates may be mapped onto actual numeric distance \rightarrow Effect in all MNs
- Likert scale (vs. binary JT) \rightarrow semantic \neq pragmatic inferences (Cummins and Katsos, 2010; Katsos and Bishop, 2011)
- A good metric?
- If so, greater range of ratings also a criterion (variation among speakers)?

Up for discussion

- Effect of distance
- Scalar/semantic distance - similar findings for other scalar terms (Beltrama and Xiang, 2013; Van Tiel et al., 2014): e.g., many/some \rightsquigarrow not all > many/some \rightsquigarrow not most
- Distance in coherence rates may be mapped onto actual numeric distance \rightarrow Effect in all MNs
- Likert scale (vs. binary JT) \rightarrow semantic \neq pragmatic inferences (Cummins and Katsos, 2010; Katsos and Bishop, 2011)
- A good metric?
- If so, greater range of ratings also a criterion (variation among speakers)?
- No difference between at most and fewer than - semantic identity or failure to find a difference?

Other points?

Thank you!

Bibliography I

Alexandropoulou, S. (to appear), Testing the nature of variability effects with modified numerals, in 'Paper presented at Sinn und Bedeutung (SuB) 19. Georg-August-Universität Göttingen'.
Beltrama, Andrea and Ming Xiang (2013), Is good better than excellent? an experimental investigation on scalar implicatures and gradable adjectives, in E.Chemla, V.Homer and G.Winterstein, eds, 'Sinn und Bedeutung 17', pp. 81-98.
Blok, D. (2015), 'The semantics and pragmatics of directional numeral modifiers', Unpublished draft, available at: http://www.dominiqueblok.org/work.
Blok, Dominique (2015), The semantics and pragmatics of directional numeral modifiers. SALT.
Cummins, C, Uli Sauerland and Stephanie Solt (2012), 'Granularity and scalar implicature in numerical expressions', Linguistics \& Philosophy 35, 135-169.
Cummins, Chris and Napoleon Katsos (2010), 'Comparative and superlative quantifiers: Pragmatic effects of comparison type', Journal of Semantics 27(3), 271 -305.
Davies, Mark (2008), 'The corpus of contemporary american english: 425 million words, 1990-present'.

Bibliography II

Fox, Danny and Martin Hackl (2006), 'The universal density of measurement',
Linguistics and Philosophy 29(5), 537-586.
Hackl, Martin (2000), Comparative Quantifiers, PhD thesis, MIT.
HNC (Hellenic National Corpus) (2009), Institute for Language and Speech
Processing.
URL: http://hnc.ilsp.gr/en/default.asp
Katsos, Napoleon and Dorothy VM Bishop (2011), 'Pragmatic tolerance:
Implications for the acquisition of informativeness and implicature',
Cognition 120(1), 67-81.
Krifka, Manfred (1999), At least some determiners aren't determiners, in
K.Turner, ed., 'The Semantics/Pragmatics Interface from different points of view', Elseviewer Science, Oxford, pp. 257-291.
Nouwen, Rick (2006), Remarks on the polar orientation of almost, in J.van de
Weijer and B.Los, eds, 'Linguistics in the Netherlands', AvT publications 23, Benjamins.
Nouwen, Rick (2010a), 'Two kinds of modified numerals', Semantics and
Pragmatics 3, 1-41.

Bibliography III

Nouwen, Rick (2010b), What's in a Quantifier, in M.Everaert, T.Lentz, H.de Mulder, O.Nilsen and A.Zondervan, eds, 'The Linguistic Enterprise', Linguistik Aktuell 150. Benjamins.
Nouwen, Rick (2015), Modified numerals: the epistemic effect, in
L.Alonso-Ovalle and P.Menendez-Benito, eds, 'Epistemic Indefinites: Exploring Modality Beyond the Verbal Domain', Oxford University Press, pp. 244-266.
Schwarz, Bernhard, Brian Buccola and Michael Hamilton (2012), 'Two types of class b numeral modifiers: A reply to nouwen 2010', Semantics and Pragmatics 5, 1-25.
Van Tiel, Bob, Emiel Van Miltenburg, Natalia Zevakhina and Bart Geurts (2014), 'Scalar diversity', Journal of Semantics p. ffu017.

Bottom-of-the-scale effect

- Schwarz et al. (2012) : Up to differs from expressions like at most and maximally in another way: it displays the bottom-of-the-scale effect
(20) a. At most ten people died in the crash.
b. At most one person died in the crash.

Bottom-of-the-scale effect

- Schwarz et al. (2012) : Up to differs from expressions like at most and maximally in another way: it displays the bottom-of-the-scale effect
(20) a. At most ten people died in the crash.
b. At most one person died in the crash.
(21) a. Up to ten people died in the crash.
b. \#Up to one person died in the crash.

Bottom-of-the-scale effect

- The bounds in combination with the range requirement explain the bottom-of-the-scale effect
- All class B numeral modifiers that set an upper bound require quantification over a range of values and display the bottom-of-the-scale effect as a result

Bottom-of-the-scale effect

- The bounds in combination with the range requirement explain the bottom-of-the-scale effect
- All class B numeral modifiers that set an upper bound require quantification over a range of values and display the bottom-of-the-scale effect as a result
(22) a. \#Up to one person died in the crash.

Bottom-of-the-scale effect

- The bounds in combination with the range requirement explain the bottom-of-the-scale effect
- All class B numeral modifiers that set an upper bound require quantification over a range of values and display the bottom-of-the-scale effect as a result
(22) a. \#Up to one person died in the crash.
(23) a. \#At most zero people died in the crash.

Bottom-of-the-scale effect

- The bounds in combination with the range requirement explain the bottom-of-the-scale effect
- All class B numeral modifiers that set an upper bound require quantification over a range of values and display the bottom-of-the-scale effect as a result
(22) a. \#Up to one person died in the crash.
b. Up to two people died in the crash. $\left\{p_{1}, p_{2}\right\}$
(23) a. \#At most zero people died in the crash. $\left\{p_{0}\right\}$

Bottom-of-the-scale effect

- The bounds in combination with the range requirement explain the bottom-of-the-scale effect
- All class B numeral modifiers that set an upper bound require quantification over a range of values and display the bottom-of-the-scale effect as a result
(22) a. \#Up to one person died in the crash.
b. Up to two people died in the crash. $\left\{p_{1}, p_{2}\right\}$
(23) a. \#At most zero people died in the crash. $\left\{p_{0}\right\}$
b. At most one person died in the crash. $\left\{p_{0}, p_{1}\right\}$

Experiment 1: n \& m's

Item No	n	$m_{\text {under }}$	$m_{\text {over }}$
1	3	2	4
2	2	1.5	3
3	96.500	95,000	96,900
4	5.5	4	6
5	4	3	5
6	9	7	10
7	1	.8	1.2
8	43	40	45
9	152,000	150,000	152,700
10	980	950	1,000
11	$249,000,000$	$242,000,000$	$249,300,000$
12	7	5	8

- Not 100% round n 's, but small distance between $n \& m_{\text {over }} \rightsquigarrow$ possible granularity effects
- Same effects after excluding those items

Experiment 1: Translated example filler items

Contradictory fillers ('Bad fillers')
(24) The Panhellenic examinations started at the end of May; specifically, the examination of the first subject took place on the 10th of June.

Coherent fillers ('Good fillers')
(25) Several countries have more than one official language; for example, Belgium has three official languages: Dutch, French and German.

Experiment 1: Targets vs. Good fillers

Results

- Scores for Good fillers significantly higher than scores for 'over' condition for fewer than ($\beta=1.224, S E=.181, p<.0001$), for up to ($\beta=1.444, S E=.181$, $p<.0001$), and for at most
($\beta=1.18, S E=.181, p<.0001)$

Experiment 1: Targets vs. Bad fillers

Results

- Scores for Contradictions significantly lower than scores for 'over' condition for fewer than ($\beta=-1.32, S E=.2, p<.0001$), for up to ($\beta=-1.515, S E=.2$, $p<.0001$), and for at most $(\beta=-1.244, S E=.2, p<.0001)$

Experiment 2: Example filler items

All $=$ implicature; some $=$ entailment; none $=$ contradiction

CLAIM: The community looked as peaceful as it had through the view point's telescope. Several of the houses on the near edge of town were holding yard sales.

FACT: $\left\{\begin{array}{c}\text { All } \\ \text { Some } \\ \text { None }\end{array}\right\}$ of the houses on the near edge of town were holding yard sales.

How compatible is the CLAIM with the FACT?

| -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| completely
 incompatible | | | | | | completely
 compatible |

Experiment 2: Fillers

Results

- Scores for 'all' (implicature) condition sig. higher than scores for 'none' (contradiction) condition ($\beta=-2.48, S E=.338$, $p<.01$
- Scores for 'all' (implicature) condition sig. lower than scores for 'some' (entailment) condition ($\beta=-2.00, S E=.306, p<.01$

Experiment 2: Targets vs. fillers

Results

- Scores for 'all' (implicature) condition sig. higher than scores for 'over' condition for at most ($\beta=-1.16, S E=.286, p<.01$ and for fewer than ($\beta=-1.52$, $S E=.269, p<.01$ but not for up to $(\beta=-.05, S E=.278, p=0.843$
- Scores for 'some' sig. lower than score for 'under' for each modifier (fewer than: $(\beta=2.65, S E=.357$, $p<.01$; at most: $\beta=1.361$, $S E=.294, p<0.01 ;$ up to: $\beta=1.93, S E=.313, p<0.01)$

[^0]: *98 Female, 2 no gender info; Mean age: 32.8; Age range: 19-67

